首页> 外文学位 >Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles.
【24h】

Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles.

机译:在过渡金属和金属氧化物纳米粒子上电催化还原二氧化碳。

获取原文
获取原文并翻译 | 示例

摘要

The electroreduction of carbon dioxide to liquid products is an important component in the utilization of CO2 and in the high-density storage of intermittent renewable energy in the form of chemical bonds. Materials based on indium and tin, which yield predominantly formic acid, have been investigated in order to gain a greater understanding of the electrochemically active species and the mechanism of CO2 reduction on these heavy post-transition metals, since prior studies on the bulk metals did not provide thermodynamically sensible reaction pathways.;Nanoparticles of the oxides and hydroxides of tin and indium have been prepared and characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and various electrochemical methods in order to obtain structural information and analyze the role of various surface species on the CO2 reduction pathway. On both indium and tin, metastable surface-bound hydroxides bound CO2 and formed metal carbonates, which can then be reduced electrochemically. The relevant oxidation state of tin was suggested to be SnII rather than SnIV, necessitating a pre reduction to generate the CO2-binding species.;Metallic indium nanoparticles partially oxidized in air and became highly efficient CO2 reduction electrocatalysts. Unit Faradaic efficiencies for formate, much higher than on bulk indium, were achieved with only 300 mV of overpotential on these particles, which possessed an oxyhydroxide shell surrounding a conductive metallic core. Alloys and mixed-metal oxide and hydroxide particles of tin and indium have also been studied for their carbon dioxide electrocatalytic capabilities, especially in comparison to the pure metal species.;Additionally, a solar-driven indium-based CO2 electrolyzer was developed to investigate the overall efficiency for intermittent energy storage. The three flow cells were powered by a commercial photovoltaic array and had a maximum conversion efficiency of incident solar energy to combustible chemical bonds of 1.8%, twice as high as natural photosynthesis in green plants and almost ten times as high as the previous best solar-powered CO2 electroreduction system.
机译:将二氧化碳电还原为液体产品是利用CO2以及以化学键形式高密度存储间歇性可再生能源的重要组成部分。为了更深入地了解这些重的过渡金属上的电化学活性种类和减少CO2的机理,已经对主要生产甲酸的铟和锡材料进行了研究,因为先前对大块金属的研究确实不提供热力学上敏感的反应途径。;已经制备了锡和铟的氧化物和氢氧化物的纳米粒子,并通过透射电子显微镜,X射线衍射法,X射线光电子能谱和各种电化学方法进行了表征,以获取结构信息和分析各种表面物质在CO2还原途径中的作用。在铟和锡上,亚稳的表面结合的氢氧化物会结合CO2并形成金属碳酸盐,然后可以通过电化学方法将其还原。锡的相关氧化态被认为是SnII而不是SnIV,因此必须进行预还原以生成CO2结合物种。金属铟纳米粒子在空气中被部分氧化,成为高效的CO2还原电催化剂。在这些粒子上仅具有300 mV的超电势,就获得了甲酸的单位法拉第效率,远高于散装铟,该粒子具有围绕导电金属核的羟基氧化物壳。还研究了锡和铟的合金以及混合金属氧化物和氢氧化物颗粒的二氧化碳电催化能力,特别是与纯金属物种相比。;此外,开发了太阳能驱动的铟基CO2电解槽以研究间歇储能的整体效率。这三个流通池由一个商用光伏阵列提供动力,入射太阳能到可燃化学键的最大转换效率为1.8%,是绿色植物中自然光合作用的两倍,几乎是以前最好的太阳能电池的十倍。动力二氧化碳减排系统。

著录项

  • 作者

    White, James L.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号