首页> 外文学位 >Seasonal variation of belowground respired carbon dioxide from Wyoming ecosystems and disturbed minelands.
【24h】

Seasonal variation of belowground respired carbon dioxide from Wyoming ecosystems and disturbed minelands.

机译:来自怀俄明州生态系统和受干扰的雷区的地下呼吸二氧化碳的季节性变化。

获取原文
获取原文并翻译 | 示例

摘要

Terrestrial ecosystems exchange carbon with the atmosphere as a result of photosynthesis and respiration. Fluxes for these processes are large, and the difference between them is small in most ecosystems. For example, on the global scale the terrestrial photosynthetic flux is approximately 120 Gt. carbon per year and the recent annual storage (net of photosynthesis-respiration) is approximately 1-2 Gt. carbon per year (Lavigne and Robitaille, 1999). Because the balance between photosynthesis and respiration is small in comparison to the rates of these processes, minor changes in the rates of respiration can have a large impact on net primary production. When individual ecosystems are considered, some are substantial sinks of carbon while others can be substantial sources. The differences among ecosystems arise in a large part because of the differences in temperature and vegetation in a specific ecosystem. Temperature is known to be able to determine most of the major processes in the carbon cycle, including the initial fixation of carbon in photosynthesis (Mooney and Ehleringer, 1997), the allocation of carbon between roots and shoots (Farrar, 1988) and root growth (Kaspar and Bland, 1992, respiratory losses of carbon by plants (Ryan, 1991) and the decomposition of organic matter by soil microorganisms (Swift et. al., 1979).; Grassland ecosystems store most of their carbon in soils, where turnover rates are relatively long, and so changes, though they may occur slowly, will be of significant duration. Changes in ecosystem carbon storage will have a significant and long lived effect on global carbon cycles (Parton et. al., 1995).; The objectives of the first study, were: (1) to compare annual and seasonal rates of soil respiration across a range of ecosystems differing in abiotic conditions, and (2) to evaluate the extent to which soil respiration is correlated with soil surface temperature and monthly precipitation levels. The hypothesis is, that (1) rates of respiration would be least in alpine soils and higher in grassland soils due to climate and elevation differences (2) there would be strong intra-annual variation in soil respiration among seasons and (3) that soil respiration, soil temperature and precipitation would be directly related since soil microbial activity is temperature and moisture dependent (Sylvia et. al., 1998).; Land management practices have change in the last 200 years resulting in more areas of disturbed lands. Soil organic matter is reduced for many years following disturbance (Houghton et. al., 1983) affecting soil physical, chemical and biological parameters. Amounts of biomass C from soil organic matter are significantly lower in disturbed soils than in undisturbed soils (Williamson and Johnson, 1990). The lower amounts of carbon in reclaimed disturbed ecosystems would result in lower amounts of CO2 flux from reclaimed areas. Over time CO2 levels from reclaimed ecosystems would return to the approximately the same levels as adjacent undisturbed ecosystems.; The objective of the second study was to examine carbon and nitrogen mineralization rates as well as microbial biomass in reclaimed surface mine soils compared to nearby undisturbed soils to determine if there is a reduced capacity for nutrient cycling in the disturbed soil.
机译:由于光合作用和呼吸作用,陆地生态系统与大气交换了碳。这些过程的通量很大,而在大多数生态系统中它们之间的差异很小。例如,在全球范围内,陆地光合作用通量约为120 Gt。每年的碳排放量和最近的年储存量(扣除光合作用和呼吸作用)约为1-2 Gt。每年的碳排放量(Lavigne和Robitaille,1999年)。因为与这些过程的速率相比,光合作用和呼吸之间的平衡很小,所以呼吸速率的细微变化会对净初级生产产生重大影响。当考虑单个生态系统时,有些是大量的碳汇,而另一些则可能是大量的碳源。生态系统之间的差异在很大程度上是由于特定生态系统中温度和植被的差异所致。已知温度能够确定碳循环中的大多数主要过程,包括碳在光合作用中的初始固定(Mooney和Ehleringer,1997),根与芽之间的碳分配(Farrar,1988)和根的生长。 (Kaspar和Bland,1992年,植物因呼吸道损失的碳(Ryan,1991年)和土壤微生物分解的有机物(Swift等人,1979年);;草地生态系统将大部分碳储存在土壤中,碳排放的速率相对较长,因此变化虽然可能会缓慢发生,但却会持续很长时间;生态系统碳储量的变化将对全球碳循环产生重大而长期的影响(Parton等,1995)。第一项研究的目标是:(1)比较非生物条件不同的一系列生态系统中土壤呼吸的年速率和季节速率,以及(2)评估土壤呼吸与土壤表面温度的相关程度和每月降水量。假设是:(1)由于气候和海拔差异,高寒土壤的呼吸速率最低,草原土壤的呼吸速率较高(2)季节之间土壤呼吸的年内变化很大,(3)呼吸,土壤温度和降水量将直接相关,因为土壤微生物活动与温度和湿度有关(Sylvia等,1998)。在过去的200年中,土地管理实践发生了变化,导致更多的土地受到干扰。在扰动土壤物理,化学和生物学参数后,土壤有机质减少了很多年(Houghton等,1983)。受扰动的土壤中来自土壤有机质的生物量碳含量明显低于未扰动的土壤(Williamson和Johnson,1990)。再生扰动的生态系统中较低的碳含量将导致较低的二氧化碳排放量。随着时间的流逝,再生生态系统中的二氧化碳水平将恢复到与相邻未受干扰的生态系统大致相同的水平。第二项研究的目的是,与附近未扰动的土壤相比,研究再生表层土壤中的碳和氮矿化率以及微生物量,以确定受扰动土壤中养分循环的能力是否降低。

著录项

  • 作者

    Piper, Robert E.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Agriculture Soil Science.; Environmental Sciences.
  • 学位 M.S.
  • 年度 2001
  • 页码 35 p.
  • 总页数 35
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 土壤学;环境科学基础理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号