首页> 外文学位 >The development and applications of a numerical method for compressible vorticity confinement in vortex-dominant flows.
【24h】

The development and applications of a numerical method for compressible vorticity confinement in vortex-dominant flows.

机译:涡旋主导流中可压缩涡度限制数值方法的发展与应用。

获取原文
获取原文并翻译 | 示例

摘要

An accurate and efficient numerical method for Compressible Vorticity Confinement (CVC) was developed. The methodology follows from Steinhoff's vorticity confinement approach that was developed for incompressible flows. In this research, the extension of this approach to compressible flows has been developed by adding a vorticity confinement term as a “body force” into the governing compressible flow equations. This vorticity confinement term tends to cancel the numerical dissipative errors inherently related to the numerical discretization in regions of strong vorticity gradients.; The accuracy, reliability, efficiency and robustness of this method were investigated using two methods. One approach is directly applying the CVC method to several real engineering problems involving complex vortex structures and assessing the accuracy by comparison with existing experimental data and with other computational techniques. Examples considered include supersonic conical flows over delta wings, shock-bubble and shock-vortex interactions, the turbulent flow around a square cylinder and the turbulent flow past a surface-mounted 3D cube in a channel floor. A second approach for evaluating the effectiveness of the CVC method is by solving simplified “model problems” and comparing with exact solutions. Problems that we have considered are a two-dimensional supersonic shear layer, flow over a flat plate and a two-dimensional vortex moving in a uniform stream.; The effectiveness of the compressible confinement method for flows with shock waves and vortices was evaluated on several complex flow applications. The supersonic flow over a delta wing at high angle of attack produces a leeward vortex separated from the wing and cross flow, as well as bow shock waves.; The vorticity confinement solutions compare very favorably with experimental data and with other calculations performed on dense, locally refined grids. Other cases evaluated include isolated shock-bubble and shock-vortex interactions. The resulting complex, unsteady flow structures compare very favorably with experimental data and computations using higher-order methods and highly adaptive meshes.; Two cases involving massive flow separation were considered. First the two-dimensional flow over a square cylinder was considered. The CVC method was applied to this problem using the confinement term added to the inviscid formulation, but with the no-slip condition enforced. This produced an unsteady separated flow that agreed well with experimental data and existing LES and RANS calculations. The next case described is the flow over a cubic protuberance on the floor of a channel. This flow field has a very complex flow structure involving a horseshoe vortex, a primary separation vortex and secondary corner vortices. The computational flow structures and velocity profiles were in good agreement with time-averaged values of the experimental data and with LES simulations, even though the confinement approach utilized more than a factor of 50 fewer cells (about 20,000 compared to over 1 million).; In order to better understand the applicability and limitations of the vorticity confinement, particularly the compressible formulation, we have considered several simple model problems. Classical accuracy has been evaluated using a supersonic shear layer problem computed on several grids and over a range of values of confinement parameter. The flow over a flat plate was utilized to study how vorticity confinement can serve as a crude turbulent boundary layer model. Then we utilized numerical experiments with a single vortex in order to evaluate a number of consistency issues related to the numerical implementation of compressible confinement.
机译:开发了一种精确有效的可压缩涡度限制(CVC)数值方法。该方法遵循Steinhoff针对不可压缩流开发的涡度限制方法。在这项研究中,通过在控制可压缩流方程中添加了作为“体力”的涡度约束项,将这种方法扩展到可压缩流。该旋涡约束项趋向于消除与强旋涡梯度区域中数值离散固有相关的数值耗散误差。使用两种方法研究了该方法的准确性,可靠性,效率和鲁棒性。一种方法是将CVC方法直接应用于涉及复杂涡旋结构的几个实际工程问题,并通过与现有实验数据和其他计算技术进行比较来评估准确性。考虑的示例包括在三角翼上的超音速圆锥流,激波和激涡相互作用,方形圆柱体周围的湍流以及流道地板中经过表面安装的3D立方体的湍流。评估CVC方法有效性的第二种方法是解决简化的“模型问题”并与精确的解决方案进行比较。我们所考虑的问题是二维超音速剪切层,在平板上流动和二维涡流以均匀流运动。在几种复杂的流动应用中,评估了可压缩约束方法对冲击波和涡流的有效性。三角翼上的超音速气流以大迎角产生了与机翼和横流分开的下风涡流,以及弓形冲击波。涡度约束解决方案与实验数据以及在密集的局部精炼网格上执行的其他计算相比具有非常好的优势。评估的其他案例包括孤立的冲击气泡和冲击涡相互作用。所产生的复杂,不稳定的流动结构与使用高阶方法和高度自适应网格的实验数据和计算结果相比非常有利。考虑了涉及大量流分离的两个案例。首先考虑在方形圆柱体上的二维流动。使用添加到无粘性配方中的约束项将CVC方法应用于此问题,但必须施加防滑条件。这产生了不稳定的分离流,该流与实验数据以及现有的LES和RANS计算非常吻合。所描述的下一种情况是在通道底部的立方突起上的流动。该流场具有非常复杂的流结构,包括马蹄涡,初级分离涡和次级角涡。计算流程的结构和速度分布与实验数据的时间平均值和LES模拟非常吻合,尽管这种限制方法使用的细胞减少了50多个(约20,000个,而超过了100万个)。为了更好地理解涡度限制的适用性和局限性,尤其是可压缩制剂,我们考虑了几个简单的模型问题。使用在几个网格上以及在一定范围的约束参数值上计算出的超音速剪切层问题,可以评估经典精度。利用平板上的流动来研究涡度限制如何可以用作原始湍流边界层模型。然后,我们利用具有单个涡旋的数值实验来评估与可压缩约束的数值实现有关的许多一致性问题。

著录项

  • 作者

    Hu, Guangchu.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Aerospace.; Applied Mechanics.; Mathematics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;应用力学;数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号