t≜ x0+e0>'/> Singular perturbations in coupled stochastic differential equations.
首页> 外文学位 >Singular perturbations in coupled stochastic differential equations.
【24h】

Singular perturbations in coupled stochastic differential equations.

机译:耦合随机微分方程的奇摄动。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis we study the coupled system of stochastic integral equations xet≜ x0+e0>t F&parl0;xes ,yes&parr0; ds+e1/20>t G&parl0;xes &parr0;dws, 0.0.1 yet≜ y0+0>tb&parl0; xes,y es&parr0;ds+ 0>ts&parl0;xe s,yes &parr0;bs, 0.0.2 in which &epsis; > 0 is a small parameter, {lcub}x&epsis;(t){rcub} is an Rd -valued slow process, and {lcub}y &epsis;(t){rcub} is an RD -valued fast process. Our general goal is to characterize asymptotic properties of the slow process {lcub}x&epsis; (t){rcub} over intervals of the form 0 ≤ t T/&epsis;, for a fixed constant T ∈ (0, ∞), as &epsis; → 0. The motivation for studying this question is a result of Khas'minskii (“On the Averaging Principle for Itô Stochastic Differential Equations”, Kybernetika , V. 4(3): 260–279, 1968 (Russian), also stated as Theorem 9.1 on page 264 of the book Random Perturbations of Dynamical Systems by Freidlin and Wentzel, Springer-Verlag, 1984), which basically goes as follows: suppose that the auxiliary stochastic differential equation dxt=b x,xt dt+sx,xt dbt 0.0.3 (which is really just (0.0.2), but with the slow variables x&epsis;(s) “frozen” at some fixed x Rd ) is “stable”, in the sense that the Markov process arising from (0.0.3) has a unique invariant probability measure π x, for each x Rd . Define the “averaged” drift Fx RDF x,xdpx x, 0.0.4 and use this to write the “averaged” version of (0.0.1) name
机译:本文研究随机积分方程的耦合系统 x e t &trie; x 0 + e <在align =“ r”> 0 > t F&parl0; x < sup> e s ,y e s&parr0; ds + e 1/2 0 > t G&parl0; x e s &parr0; dw s 0.0.1 y e t &trie; y 0 + 0 > t b&parl0; x e s ,y e s &parr0; ds + 0 > t s &parl0; x e s < / fen>,y e s &parr0; b s 0.0.2 其中,&epsis; > 0是参数,{lcub} x &epsis; t ){rcub}是< math> R d 值的 slow process ,和{ lcub} y &epsis; t ){rcub}是 R D 值的快速过程。我们的总体目标是表征缓慢过程{lcub} x &epsis;的渐近性质。 t ){rcub},间隔为0≤ t T /&epsis ;,且固定常数< italic> T ∈(0,∞),如&epsis; →0。研究此问题的动机是Khas'minskii(“关于Itô随机微分方程的平均原理”, Kybernetika ,V。4(3):260-279,1968年)的结果。 (俄语),也称为Freidlin和Wentzel在Springer-Verlag于1984年出版的动力学系统的随机扰动的第264页上的定理9.1,其基本内容如下:假设辅助随机微分方程 d x t = b x, x t dt + s x, x t d b t 0.0.3 (实际上只是(0.0.2),但变量很慢< italic> x &epsis; s )在某些固定的 x 处“冻结” R d )是“稳定的”,即从(0.0.3)产生的马尔可夫过程具有对于每个 x R <,唯一不变概率度量π x sup> d 。定义“平均”漂移 F x &trie; R D F x , x d p x x < hsp sp =“ 2.000”> 0.0.4 并使用它来编写(0.0.1)的“平均”版本名称

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号