首页> 外文学位 >A numerical method for solving anisotropic elliptic boundary value problems on irregular domains in two and three dimensions.
【24h】

A numerical method for solving anisotropic elliptic boundary value problems on irregular domains in two and three dimensions.

机译:一种求解二维和三维不规则域上各向异性椭圆边值问题的数值方法。

获取原文
获取原文并翻译 | 示例

摘要

We present a new second-order stable Cartesian grid algorithm for solving anisotropic elliptic boundary value problems on bounded irregular domains in two dimensions (2D) and three dimensions (3D). The irregular domain is embedded in a uniform Cartesian mesh, but grid points outside of the domain are not used. Second-order local truncation error and the sufficient Gerschgorin criterion for stability impose some conditions to be satisfied by the weights of the discretization scheme at a particular interior grid point. We show that for interior grid points far away from the irregular boundary, these conditions need not always hold. A necessary and sufficient condition, in terms of the anisotropy matrix, for the existence of a Gerschgorin second-order scheme at a given interior grid point is found. This theorem is proved in 2D and 3D. The governing partial differential equations are discretized through a new technique which uses a linear programming approach to find the scheme at points far away from the irregular boundary. Near the irregular boundary, with the addition of boundary information, special discretizations are found by using an optimization approach. As an example, we solve isotropic and anisotropic Laplace equation with Neumann boundary conditions on an annulus in 2D. In addition, we solve isotropic and anisotropic Laplace equation with Neumann boundary conditions on a sphere with a centered hole in 3D. Anisotropy is introduced through a parameter. Several plots and tables show second-order accuracy and stability of the discretization matrix in isotropic Laplacian cases. The influence of anisotropy parameter values in accuracy and stability is also shown.
机译:我们提出了一种新的二阶稳定笛卡尔网格算法,用于求解二维(2D)和三维(3D)有界不规则域上的各向异性椭圆边值问题。不规则区域嵌入在统一的笛卡尔网格中,但不使用该区域外部的网格点。二阶局部截断误差和足够的稳定性Gerschgorin准则强加了一些条件,这些条件可以通过特定内部网格点处离散化方案的权重来满足。我们表明,对于远离不规则边界的内部网格点,这些条件不一定总是成立。在各向异性矩阵方面,找到了在给定的内部网格点上存在Gerschgorin二阶方案的必要和充分条件。该定理在2D和3D中得到证明。主导的偏微分方程通过一种新技术离散化,该新技术使用线性规划方法在远离不规则边界的点处找到该方案。在不规则边界附近,通过添加边界信息,可以使用优化方法找到特殊的离散化。例如,我们在二维环上用Neumann边界条件求解各向同性和各向异性Laplace方程。此外,我们在带有3D中心孔的球面上求解具有Neumann边界条件的各向同性和各向异性Laplace方程。通过参数引入各向异性。几张图和表格显示了各向同性拉普拉斯情况下离散化矩阵的二阶精度和稳定性。还显示了各向异性参数值对准确性和稳定性的影响。

著录项

  • 作者

    Dumett, Miguel Angel.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号