首页> 外文学位 >A structural change in the neck region of kinesin motors drives unidirectional motility.
【24h】

A structural change in the neck region of kinesin motors drives unidirectional motility.

机译:驱动蛋白马达的颈部区域的结构变化驱动单向运动。

获取原文
获取原文并翻译 | 示例

摘要

Kinesin motors power several intracellular processes by converting energy from ATP hydrolysis into motion along microtubules. Kinesin walks unidirectionally towards the plus ends of microtubules, can processively walk hundreds of steps without dissociating, and is about 50% efficient in converting the chemical energy of ATP into the mechanical energy of motility. The mechanism by which kinesin could accomplish this was unknown.; To investigate whether conformational changes in the kinesin neck linker (the first 10 amino acids of the neck) drive the motor's unidirectional forward motion, my collaborators and I did EPR and FRET spectroscopy as well as undecagold electron microscopy on the kinesin neck linker. The neck linker undergoes a disordered to ordered transition, zipping up onto the catalytic core, when the motor binds ATP. When the motor releases phosphate, the neck linker returns to its original disordered state. This rearward to forward conformational change drives kinesin's plus-end directed motility on microtubles.; We tested whether the neck linker conformational change was linked to the kinesin dimer's coordinated, processive motility by examining whether two ATP nonhydrolyzing mutants, G234A and E236A, could undergo this conformational change. While defective in ATP hydrolysis, an E236A kinesin dimer had coordinated ADP release of its two heads and was able to undergo the neck linker conformational change. The G234A dimer, however, could not coordinate ADP release between its two heads, and did not exhibit a conformational change in its neck linker between the ATP and ADP states. This result showed that this conformational change is critical to head-head coordination in the kinesin dimer.; We characterized the thermodynamics of the neck linker conformational change using EPR spectroscopy. In the presence of triphosphate nucleotides and microtubules, the free energy change between the docked and undocked states of the neck linker is small, whereas the enthalpy and entropy changes are very large. One would expect this for a disordered to ordered transition. The large entropic cost is balanced out by a large favorable enthalpy change. Furthermore, the small free energy change seen between docked and undocked states of the neck linker may explain why kinesin is extremely efficient.
机译:驱动蛋白通过将来自ATP水解的能量转换为沿着微管的运动来驱动多个细胞内过程。驱动蛋白单向走向微管的正末端,可以连续地走数百步而不会解离,并且将ATP的化学能转化为运动的机械能的效率约为50%。驱动蛋白完成此作用的机制尚不清楚。为了研究驱动蛋白颈连接器(脖子的前10个氨基酸)的构象变化是否驱动电机的单向向前运动,我和我的合作者在驱动蛋白颈连接器上进行了EPR和FRET光谱以及无衰减电子显微镜检查。当马达结合ATP时,颈部接头会经历从无序到有序的过渡,并压缩到催化核上。当马达释放磷酸盐时,颈部连接器返回其原始的无序状态。从后到前的构象变化驱动微管上驱动蛋白的正向运动。我们通过检查两个ATP非水解突变体G234A和E236A是否可以经历这种构象变化,来测试颈部接头构象变化是否与驱动蛋白二聚体的协调性,进行性运动相关。 E236A驱动蛋白二聚体虽然在ATP水解中存在缺陷,但已协调了其两个头部的ADP释放,并且能够经历颈部接头构象变化。然而,G234A二聚体不能协调其两个头部之间的ADP释放,并且在其ATP和ADP状态之间的颈部接头中也没有表现出构象变化。该结果表明,这种构象变化对于驱动蛋白二聚体中的头-头协调至关重要。我们使用EPR光谱表征了颈部接头构象变化的热力学。在存在三磷酸核苷酸和微管的情况下,颈部接头的对接和非对接状态之间的自由能变化很小,而焓和熵的变化非常大。有人期望这是一种无序到有序的过渡。较大的熵成本被较大的有利焓变所抵消。此外,在颈连接器的对接状态和非对接状态之间看到的微小自由能变化可以解释为什么驱动蛋白非常有效。

著录项

  • 作者

    Rice, Sarah E.;

  • 作者单位

    University of California, San Francisco.;

  • 授予单位 University of California, San Francisco.;
  • 学科 Biophysics General.; Biology Animal Physiology.; Biology Cell.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;生理学;细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号