首页> 外文学位 >Size-controllable Growth of Zinc Oxide Nanorod Arrays and Their Surface Modifications.
【24h】

Size-controllable Growth of Zinc Oxide Nanorod Arrays and Their Surface Modifications.

机译:氧化锌纳米棒阵列的尺寸可控生长及其表面修饰。

获取原文
获取原文并翻译 | 示例

摘要

One dimensional (1D) ZnO nanostructure becomes a research focus in recent years. On the one hand, ZnO itself possesses structural, electrical and optical properties that make it useful for a diverse range of technological applications. On the other hand, semiconductor nanowire owns many advantages, such as superiority in electron transport and its high surface to volume ratio. Aligned ZnO 1D nanostructures on conducting substrates are of special interests, as they are easy to be integrated into devices, directly working as functional unit.;In this study, a solution chemistry based method to grow aligned ZnO nanorod arrays on Zn foil is developed at first. Effects of various growth parameters, including the temperature, solution composition and the concentration of individual components on the morphology, structural quality, and properties of the ZnO nanorods are studied. The average diameter of the nanorods in the array can be tuned from ∼20 nm to ∼150 nm by systematically changing the growth conditions. Nanorods with larger diameters are found to be of better structural quality as compared to the smaller diametered ones, as suggested by the cathodoluminescence measurement. Following similar logic, a vapor transport deposition route on controllable fabricating of the ZnO nanorod arrays is investigated. The average diameter of the ZnO nanorods can be tuned from less than 40 nm to larger than submicron, by controlling the fabrication conditions. Larger-diametered nanorods that grow on higher temperature zone are found to possess higher band edge to defect emission ratio.;Green emission is observed from the ZnO nanorods synthesized by both methods, which is commonly attributed to the surface defect emission from the nanostructure. We modify surface of the nanorods with SiO 2 and investigate the relation between green emission and the surface defect. However, the surface passivation fails to reduce the green emission significantly, suggesting that surface defects of ZnO are not necessarily responsible for the green emission, but the interior structure quality of the ZnO nanorods decides the luminescence behavior.;At last, a thermal evaporation method that modifies the surface of ZnO nanorods and forms core shell structure is developed, which structure constitutes the photoelectrode for solar energy application. Single crystal ZnO nanorods are uniformly covered by wurtzite polycrystalline CdxZn1-x SySe1-y layer. The band gap of the shell can be systematically tuned from 2.5 to 1.7 eV by varying its composition, as suggested by the optical extinction measured of the samples. The type II band alignment between the ZnO core and the alloy shell enables effective photo-generated charge carrier separation, and the single crystalline ZnO nanorod array provides a direct electrical pathway for the photo-injected electron transport. The nanocable solar cells exhibited short-circuit current ∼0.2 mA/cm 2 and open-circuit voltages of 0.45 V when illuminated with 100 mW/cm 2 simulated AM 1.5 spectrum.
机译:近年来,一维(一维)ZnO纳米结构成为研究重点。一方面,ZnO本身具有结构,电学和光学特性,使其可用于多种技术应用。另一方面,半导体纳米线具有许多优点,例如电子传输方面的优势以及其高的表面体积比。导电衬底上的对齐ZnO 1D纳米结构很容易引起关注,因为它们易于集成到器件中,直接用作功能单元。;在本研究中,开发了一种基于溶液化学的方法来在Zn箔上生长对齐的ZnO纳米棒阵列。第一。研究了各种生长参数,包括温度,溶液组成和单个组分的浓度对ZnO纳米棒的形态,结构质量和性能的影响。通过系统地改变生长条件,可以将阵列中纳米棒的平均直径从约20 nm调整到约150 nm。阴极发光测量表明,与直径较小的纳米棒相比,直径较大的纳米棒具有更好的结构质量。按照类似的逻辑,研究了ZnO纳米棒阵列可控制造过程中的气相传输沉积路径。通过控制制造条件,可以将ZnO纳米棒的平均直径从小于40 nm调整为大于亚微米。发现在较高温度区域生长的较大直径的纳米棒具有较高的能带边缘与缺陷的发射率。从两种方法合成的ZnO纳米棒中观察到绿色发射,这通常归因于纳米结构的表面缺陷发射。我们用SiO 2修饰了纳米棒的表面,并研究了绿色发射与表面缺陷之间的关系。然而,表面钝化不能显着减少绿色发射,这表明ZnO的表面缺陷不一定是绿色发射的原因,但是ZnO纳米棒的内部结构质量决定了发光行为。开发了可修饰ZnO纳米棒表面并形成核壳结构的结构,该结构构成了用于太阳能应用的光电极。纤锌矿多晶CdxZn1-x SySe1-y层均匀覆盖单晶ZnO纳米棒。壳的带隙可以通过改变其组成来系统地从2.5 eV调节到1.7 eV,这是由样品的光学消光测得的。 ZnO核和合金壳之间的II型能带对准可实现有效的光生电荷载流子分离,并且单晶ZnO纳米棒阵列为光注入的电子传输提供了直接的电通路。当用100 mW / cm 2模拟的AM 1.5光谱照射时,纳米电缆太阳能电池表现出约0.2 mA / cm 2的短路电流和0.45 V的开路电压。

著录项

  • 作者

    Jiao, Yang.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号