首页> 外文学位 >Catalytic autothermal reforming of biomass to synthesis gas .
【24h】

Catalytic autothermal reforming of biomass to synthesis gas .

机译:生物质的催化自热重整制合成气。

获取原文
获取原文并翻译 | 示例

摘要

This thesis examines the catalytic partial oxidation (CPO) of biomass as a potentially more efficient alternative to existing biomass-to-fuel processing techniques. Chapter 2 examines existing literature describing catalytic partial oxidation, its application to gaseous, volatile liquid, and non-volatile liquid fuels, and common catalyst formulations for CPO. It is well documented that Rh-based catalysts provide the most effective and robust catalysts for the partial oxidation of biomass.;Traditional biomass processing technologies suffer from the production of undesired chars and tars resulting from relatively slow reaction rates and heat transfer limitations. Chapter 3 assesses the ability of the catalytic partial oxidation process to overcome these limitations by using the catalytic partial oxidation process to integrate three biomass-to-liquid process steps (volatilization of cellulose, tar-cleaning of organic products, and water-gas-shift of the gaseous effluent) into a single autothermal catalytic reactor for the production of high quality synthesis gas at millisecond residence times (~30 ms).;Chapter 4 focuses on the development of a reactor capable of improving the utilization of biomass-derived carbon during thermochemical conversion to synthesis gas. By co-processing hydrogen-deficient biomass (H/C~2) with hydrogen-rich feedstocks (H/C≥4) through catalytic partial oxidation over Rh based catalysts, it was demonstrated experimentally that 100% of the fuel carbon atoms fed to the reactor can be converted to CO. Such an improvement in carbon efficiency has the potential to double the yield of biofuels from the limited annual biomass supply. In addition to experimental results, reaction equilibrium calculations are presented describing the limits of the reaction system as dictated by thermodynamics.;Chapter 5 focuses on the reforming zone of the reactor, examining in depth the ability of Rh based catalysts to convert undesired tars to equilibrium synthesis gas products. Experiments were performed in a fixed bed reactor at temperatures of 650-850 °C and atmospheric pressure using C6H 6 as a model tar compound. Benzene conversion exhibited a strong dependence on temperature and H2O concentration in the feed. Significantly better catalyst performance was observed upon addition of Ce to the catalyst, which increased Rh dispersion and stability. The concentration of C 6H6 in the feed had very little effect on catalyst performance. CO2, H2, and CO co-feeds had positive, neutral, and negative effects, respectively, on C6H6 conversion.;Chapter 6 uses high speed photography (1000 frames per second) to reveal that direct impingement of microcrystalline cellulose particles (300 mum) with rhodium-based reforming catalysts at high temperature (700 °C) produces an intermediate liquid phase that reactively boils to vapors. The intermediate liquid maintains contact with the porous surface permitting high heat transfer (MW m2) generating an internal thermal gradient visible within the particle as a propagating wave of solid to liquid conversion. Complete conversion to liquid yields a fluid droplet on the catalyst surface exhibiting a linear decrease in droplet volume with time leaving behind a clean surface absent of solid residue (char).;The topics presented in this thesis examine in depth the technical feasibility of using catalytic partial oxidation to convert biomass to a clean synthesis gas product stream. Through extensive performance testing and process characterization, an in depth understanding of how the fuel feed is converted to product gases is described. Although preliminary testing with clean biomass feedstocks show promising performance with a rapid system approach to thermodynamic equilibrium, further studies are needed to examine the effect of biomass-derived inorganics from non-ideal feedstocks (e.g. corn stover) on Rh-based catalysts. Finally, a technical assessment of the economics associated with distributed catalytic partial oxidation of biomass to fuels and chemicals is needed to determine the feasibility of the overall process. (Abstract shortened by UMI.)
机译:本文研究了生物质的催化部分氧化(CPO),它是现有生物质制燃料处理技术的一种潜在的更有效的替代方法。第2章研究了描述催化部分氧化,其在气态,挥发性液体和非挥发性液体燃料中的应用以及CPO常用催化剂配方的现有文献。众所周知,Rh基催化剂为生物质的部分氧化提供了最有效和最稳定的催化剂。传统的生物质加工技术由于相对较慢的反应速度和传热限制而产生了不希望的焦炭和焦油。第3章通过使用催化部分氧化过程整合三个生物质到液体的工艺步骤(纤维素的挥发,有机产品的焦油清洁和水煤气变换)来评估催化部分氧化过程克服这些限制的能力。气态流出物)进入单个自动热催化反应器,以在毫秒的停留时间(约30毫秒)内生产高质量的合成气。;第4章着重于开发一种能够在反应过程中提高生物质衍生碳利用率的反应器热化学转化为合成气。通过在Rh基催化剂上进行催化部分氧化,将缺氢生物量(H / C〜2)与富氢原料(H /C≥4)共处理,实验证明了100%的燃料碳原子碳效率的这种提高有潜力使每年有限的生物质供应所产生的生物燃料的产量增加一倍。除实验结果外,还提供了反应平衡计算,描述了由热力学决定的反应体系的极限。第5章着重于反应器的重整区,深入研究了Rh基催化剂将不希望的焦油转化为平衡的能力。合成气产品。使用C6H 6作为模型焦油化合物,在固定床反应器中于650-850°C的温度和大气压下进行实验。苯转化率显示出对进料中温度和H2O浓度的强烈依赖性。将Ce添加到催化剂中观察到明显更好的催化剂性能,这增加了Rh的分散性和稳定性。进料中C 6H6的浓度对催化剂性能的影响很小。 CO2,H2和CO共进料分别对C6H6的转化有正面,中性和负面影响。;第6章使用高速摄影(每秒1000帧)揭示了微晶纤维素颗粒(300 mum)的直接撞击。用铑基重整催化剂在高温(700°C)下产生反应性沸腾成蒸气的中间液相。中间液体保持与多孔表面的接触,从而允许高热传递(MW m2),从而在颗粒内形成可见的内部热梯度,作为固体向液体的传播波。完全转化为液体会在催化剂表面产生液滴,液滴的体积随时间呈线性下降,留下清洁的表面,没有固体残留物(炭)。本论文的主题深入研究了使用催化剂的技术可行性。部分氧化将生物质转化为清洁的合成气产物流。通过广泛的性能测试和过程表征,描述了对如何将燃料进料转化为产品气的深入了解。尽管使用清洁的生物质原料进行的初步测试显示了通过快速系统方法实现热力学平衡的良好性能,但仍需要进一步研究以研究非理想原料(例如玉米秸秆)中生物质衍生的无机物对Rh基催化剂的影响。最后,需要对与生物质分布催化部分氧化为燃料和化学品相关的经济性进行技术评估,以确定整个过程的可行性。 (摘要由UMI缩短。)

著录项

  • 作者

    Colby, Joshua Leigh.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号