首页> 外文学位 >Novel photodynamic polymers: Azobenzene-modified cellulose (azocellulose) and azobenzene-modified poly(L-glutamic acid) (AZOPLGA).
【24h】

Novel photodynamic polymers: Azobenzene-modified cellulose (azocellulose) and azobenzene-modified poly(L-glutamic acid) (AZOPLGA).

机译:新型光动力聚合物:偶氮苯改性的纤维素(偶氮纤维素)和偶氮苯改性的聚(L-谷氨酸)(AZOPLGA)。

获取原文
获取原文并翻译 | 示例

摘要

This thesis research presents the synthesis and characterization of two new kinds of photodynamic polymers: azobenzene-modified cellulose (azocellulose) and azobenzene-modified poly(L-glutamic acid) (AZOPLGA). The photoinduced deformation process on the thin films of these novel polymers was also investigated.; Azocellulose polymers with ultrahigh and low molecular weight were first successively synthesized by covalently linking azobenzene chromophores to natural cellulose via Mitsunobu reaction. By varying the molar ratios of the reactants, the azocellulose polymers with varying degree of substitution (DS) were obtained. These polymers were characterized using FT-IR, LTV-vis, and solid-state 13C CP/MAS NMR spectroscopies. Experimental results provided evidence that the coupling reaction occurs preferentially at the C6 carbon site and the primary alcohol is the predominant reactive group among the hydroxyl groups (one primary and two secondary alcohol groups) in the D glucopyranse unit of cellulose. The thermal cis-trans isomerization of azocellulose polymers is composed of two processes: (a) a fast process due to the relaxation of azobenzene chromophores trapped in a strain conformation at temperatures below its glass transition temperature, and (b) a slow process which follows a single exponential decay. A linear increase of photoinduced birefringence with the azobenzene chromophore concentration in these photodynamic polymers was observed. The maximum birefringence of 0.11 was achieved for an azocellulose polymer with a DS of 0.99.; It has been reported that SRGs cannot be efficiently inscribed with polymers of high molecular weight because of large number of entanglements of polymer chains. However, SRGs on the films of our azocellulose polymers of ultrahigh molecular weight with different functionality were successfully inscribed in a single step at different grating spacing. Surface modulation depth of the gratings increased with the degree of substitution of the azobenzene chromophores in the cellulose as well as with the grating spacing. This is the first report of SRGs on the polymers with ultrahigh molecular weight. Under the same condition, inscribing SRGs on the film of azocellulose with low molecular weight is more easily performed than that for high molecular weight. Also, the SRGs of low molecular weight azocellulose are more smoothly inscribed than that of high molecular weight azocellulose.; Another class of synthesized photodynamic polymers are azobenzene-modified poly(L-glutamic acid) (AZOPLGA) by the reacting of 4-methoxy-4-aminoazobenzene with poly(L-glutamic acid) (PLGA). Experiment data indicate that azobenzene chromophores were covalently linked to the side chain of PLGA. The thermal cis-trans isomerization of AZOPLGA polymers also shows two distinct relaxation mechanisms: (a) a fast process attributed to the relaxation of azobenzene chromophores trapped in a strained conformation at temperatures below its glass transition temperature, and (b) a slow process which follows a single exponential decay. The main chains of 35%AZOPLGA polymer are in random coils in the film cast from TFA solution but in α-helix conformation in the film cast from pyridine solution. And the modulation depth of surface relief gratings on this film in which the polymer chain in random coil is much higher than on the film in which the polymer chains are in a-helix conformation. Inscribing surface relief grating on the films of 22%AZOPLGA is not efficiently due to the low azobenzene chromophore content and tightly hydrogen-bonded conformation (α-helix or β-sheet) of the polymer. This is the first report of the effect of conformation on the surface relief gratings.
机译:本文的研究提出了两种新型的光动力聚合物的合成和表征:偶氮苯改性的纤维素(偶氮纤维素)和偶氮苯改性的聚(L-谷氨酸)(AZOPLGA)。还研究了这些新型聚合物薄膜上的光致变形过程。首先,通过Mitsunobu反应将偶氮苯生色团与天然纤维素共价连接,从而连续合成具有超高和低分子量的偶氮纤维素聚合物。通过改变反应物的摩尔比,获得具有不同取代度(DS)的偶氮纤维素聚合物。使用FT-IR,LTV-vis和固态 13 C CP / MAS NMR光谱对这些聚合物进行了表征。实验结果提供了证据,表明偶联反应优先发生在C6碳位,并且伯醇是纤维素D吡喃葡萄糖单元中羟基(一个伯醇和两个仲醇基)中的主要反应基团。偶氮纤维素聚合物的热顺-反异构化由两个过程组成:(a)由于在低于其玻璃化转变温度的温度下,应变构象中捕获的偶氮苯发色团的弛豫而导致的快速过程,和(b)随后的缓慢过程单个指数衰减。在这些光动力学聚合物中观察到光诱导的双折射随偶氮苯生色团浓度的线性增加。对于DS为0.99的偶氮纤维素聚合物,最大双折射为0.11。据报道,由于聚合物链的大量缠结,SRG不能有效地与高分子量的聚合物结合。然而,我们的具有不同功能的超高分子量偶氮纤维素聚合物薄膜上的SRGs可以在一个步骤中以不同的光栅间距成功地刻刻。光栅的表面调制深度随着纤维素中偶氮苯发色团的取代程度以及光栅间距的增加而增加。这是关于超高分子量聚合物的SRG的首次报道。在相同条件下,与高分子量相比,在低分子量偶氮纤维素膜上刻写SRG更为容易。同样,低分子量偶氮纤维素的SRG较高分子量偶氮纤维素的SRG更为平滑。另一类合成的光动力学聚合物是通过4-甲氧基-4 '-氨基偶氮苯与聚(L-谷氨酸)(PLGA)反应的偶氮苯改性的聚(L-谷氨酸)(AZOPLGA)。 。实验数据表明,偶氮苯发色团与PLGA的侧链共价连接。 AZOPLGA聚合物的热顺-反异构化也显示出两种不同的弛豫机制:(a)快速过程归因于在低于其玻璃化转变温度的温度下,应变构象中捕获的偶氮苯发色团的弛豫;以及(b)缓慢的过程遵循单个指数衰减。 3%AZOPLGA聚合物的主链在TFA溶液流延的薄膜中呈无规卷曲状,但在吡啶溶液流延的薄膜中呈α-螺旋构象。并且在该膜中的表面起伏光栅的调制深度比在其中聚合物线圈呈α-螺旋构型的膜上的表面深度光栅的调制深度高得多。由于低的偶氮苯生色团含量和聚合物的氢键紧密结合构型(α-螺旋或β-片层),在22%AZOPLGA膜上刻有表面起伏光栅的效果不佳。这是关于构象对表面起伏光栅影响的第一份报告。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号