首页> 外文学位 >Analysis and Simulation of the Vehicle-Bridge-Interaction in Horizontally Curved Railway Bridges
【24h】

Analysis and Simulation of the Vehicle-Bridge-Interaction in Horizontally Curved Railway Bridges

机译:水平曲线铁路桥梁车桥相互作用的分析与仿真

获取原文
获取原文并翻译 | 示例

摘要

Firstly, this study proposes an original scheme for the three-dimensional (3D) analysis of the dynamic interaction between trains and horizontally curved railway bridges. Key features are the 3D formulations for both the vehicle system and the bridge system, and the condensed matrix statement of the equations of motion. The scheme is readily applicable for different kinds of bridges (both straight and curved bridges) and vehicle models, or different numbers of vehicles, various types of external loads (e.g. seismic loads or wind loads), by adjusting the pertinent matrices or vectors. Then, the analysis brings forward the interaction along the radial and the torsional sense of curved bridges, which are typically neglected for straight bridges. Specifically, the study presents a 'competition' between the excitations generated by the curved path (centrifugal forces and coriolis forces), the external loads (e.g. seismic loads or wind loads) and the self-excitations of the system (rail irregularities and the wheelset hunting motion of the vehicle). Further, the study examines the simultaneous response of the interacting vehicle-bridge system with the proposed 3D VBI analysis approach, when each subsystem is set into resonance. The simulation allows the examination of deformation modes of the fully 3D multibody vehicle model (e.g. related to lateral-rolling and yawing degrees of freedom) for the first time. The study also examines the seismic response of an interacting vehicle-bridge system, under frequent and strong earthquakes.;The study models the vehicles as multibody assemblies, and simulates the straight or horizontally curved bridges with the finite element method (FEM). Specifically, an additional moving trajectory system is employed to describe the 3D dynamics of the vehicles along the curved path. The solution of the global equations of motion provides the response of both the bridge and the vehicle simultaneously. The mass matrix, the stiffness matrix, the damping matrix and the loading vector of the global system all become time-dependent, reflecting the physical reality of the VBI phenomenon. The normal contact forces are derived based on kinematic constraints on the acceleration level. As a first approach a simple tangential contact model is adopted, which is based on a zero tangential contact acceleration kinematic constraint. Later, a more complicated and more realistic tangential contact model considers creep forces and creep moments due to the rolling contact. In order to capture the wheel-rail separation (uplifting) and recontact phenomena under extreme situations (e.g. strong earthquakes), the proposed scheme employs a nonsmooth approach to the model the wheel-rail contact. A most recently proposed algorithm considers the nonlinear wheel and rail profiles and kinematics. The study accounts for the self-excitations, such as the elevation and the alignment irregularities, the wheelset hunting motion and the subsequent rolling rotation due to the conicity of the wheels. The study also considers the track eccentricity (offset) with respect to the bridge deck shear center, the effect of the cant angle and the entry spiral curve (for curved bridges). A numerical simulation computer program is developed using the available commercial programing software MATALB. The multibody vehicle model and the finite element bridge model are modeled with the commercially available software ANSYS. The associated matrices of the vehicle and the bridge subsystems from ANSYS are exported to MATLAB. The post-processing of the response, i.e., the visualization of the deformation of both the vehicle and the bridge, is employed again the software ANSYS.
机译:首先,本研究为列车与水平弯曲的铁路桥梁之间的动力相互作用的三维(3D)分析提出了一种原始方案。关键特性是用于车辆系统和桥梁系统的3D公式,以及运动方程的简明矩阵陈述。通过调整相关矩阵或矢量,该方案很容易适用于不同类型的桥梁(直角和弯曲桥梁)和车辆模型,或不同数量的车辆,各种类型的外部载荷(例如地震载荷或风载荷)。然后,分析提出了沿弯曲桥的径向和扭转方向的相互作用,而弯曲桥通常在直桥中被忽略。具体而言,研究提出了弯道产生的激励(离心力和科氏力),外部载荷(例如地震载荷或风载荷)与系统的自激(轨道不平整和轮对)之间的“竞争”。车辆的摆动运动)。此外,当每个子系统都设置为共振时,该研究使用提出的3D VBI分析方法检查了相互作用的车桥系统的同时响应。该仿真允许首次检查全3D多体车辆模型的变形模式(例如与侧向滚动和偏航自由度有关)。这项研究还研究了在频繁和强烈地震下相互作用的车桥系统的地震响应。研究将车辆建模为多体装配,并使用有限元方法(FEM)模拟了直弯或水平弯桥。具体地,采用附加的移动轨迹系统来描述车辆沿着弯曲路径的3D动力学。整体运动方程的解可以同时提供桥梁和车辆的响应。整体系统的质量矩阵,刚度矩阵,阻尼矩阵和载荷向量都与时间有关,反映了VBI现象的物理现实。法向接触力基于加速度水平的运动学约束而得出。作为第一种方法,采用简单的切向接触模型,该模型基于零切向接触加速度运动学约束。后来,一个更复杂,更现实的切向接触模型考虑了滚动接触引起的蠕变力和蠕变矩。为了捕获极端情况下(例如强地震)下的轮轨分离(隆起)和重新接触现象,建议的方案采用非光滑方法来模拟轮轨接触。最近提出的算法考虑了非线性轮轨轮廓和运动学。该研究说明了自激现象,例如高程和对齐不规则,轮对摆动运动以及由于锥度而导致的随后的滚动旋转。该研究还考虑了相对于桥面剪力中心的轨道偏心量(偏移),倾斜角和入口螺旋曲线(对于弯曲桥梁)的影响。使用可用的商业编程软件MATALB开发了数值模拟计算机程序。多体车辆模型和有限元桥梁模型是使用市售软件ANSYS建模的。车辆的相关矩阵和ANSYS的桥梁子系统被导出到MATLAB。响应的后处理,即车辆和桥梁变形的可视化,再次被软件ANSYS所采用。

著录项

  • 作者

    Zeng, Qing.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号