首页> 外文学位 >Analysis of Heat Dissipation in AlGaN/GaN HEMT with GaN Micropits at GaN-SiC Interface
【24h】

Analysis of Heat Dissipation in AlGaN/GaN HEMT with GaN Micropits at GaN-SiC Interface

机译:GaN-SiC界面处具有GaN微坑的AlGaN / GaN HEMT中的散热分析

获取原文
获取原文并翻译 | 示例

摘要

Gallium Nitride (GaN) based microelectronics technology is a fast growing and most exciting semiconductor technology in the fields of high power and high frequency electronics. Excellent electrical properties of GaN such as high carrier concentration and high carrier motility makes GaN based high electron mobility transistors (HEMTs) a preferred choice for RF applications. However, a very high temperature in the active region of the GaN HEMT leads to a significant degradation of the device performance by effecting carrier mobility and concentration. Thus, thermal management in GaN HEMT in an effective manner is key to this technology to reach its full potential.;In this thesis, an electro-thermal model of an AlGaN/GaN HEMT on a SiC substrate is simulated using Silvaco (Atlas) TCAD tools. Output characteristics, current density and heat flow at the GaN-SiC interface are key areas of analysis in this work. The electrical characteristics show a sharp drop in drain currents for higher drain voltages. Temperature profile across the device is observed. At the interface of GaN-SiC, there is a sharp drop in temperature indicating a thermal resistance at this interface. Adding to the existing heat in the device, this difference heat is reflected back into the device, further increasing the temperatures in the active region. Structural changes such as GaN micropits, were introduced at the GaN-SiC interface along the length of the device, to make the heat flow smooth rather than discontinuous. With changing dimensions of these micropits, various combinations were tried to reduce the temperature and enhance the device performance. These GaN micropits gave effective results by reducing heat in active region, by spreading out the heat on to the sides of the device rather than just concentrating right below the hot spot. It also helped by allowing a smooth flow of heat at the GaN-SiC interface. There was an increased peak current density in the active region of the device contributing to improved electrical characteristics. In the end, importance of thermal management in these high temperature devices is discussed along with future prospects and a conclusion of this thesis.
机译:基于氮化镓(GaN)的微电子技术是高功率和高频电子领域中发展迅速且最令人兴奋的半导体技术。 GaN的出色电性能(例如高载流子浓度和高载流子迁移率)使GaN基高电子迁移率晶体管(HEMT)成为RF应用的首选。但是,GaN HEMT的有源区中非常高的温度会通过影响载流子迁移率和浓度而导致器件性能显着下降。因此,有效地实现GaN HEMT的热管理是该技术发挥其全部潜力的关键。本论文中,使用Silvaco(Atlas)TCAD模拟了SiC衬底上的AlGaN / GaN HEMT的电热模型。工具。 GaN-SiC界面的输出特性,电流密度和热流是这项工作分析的关键领域。电气特性表明,对于较高的漏极电压,漏极电流会急剧下降。观察到整个设备的温度曲线。在GaN-SiC的界面处,温度急剧下降,表明该界面处的热阻。加上设备中现有的热量,这种差异热量会反射回设备中,从而进一步增加了有源区的温度。沿器件的长度在GaN-SiC界面处引入了诸如GaN微坑之类的结构变化,以使热流平稳而不是不连续。随着这些微坑尺寸的变化,尝试了各种组合以降低温度并增强器件性能。这些GaN微坑通过减少有源区中的热量,将热量散布到器件的侧面而不是仅仅集中在热点的下方,从而提供了有效的结果。通过允许GaN-SiC界面上的热量平稳流动,这也有所帮助。器件的有源区中峰值电流密度增加,有助于改善电气特性。最后,讨论了热管理在这些高温设备中的重要性,以及未来的发展前景和本论文的结论。

著录项

  • 作者

    Suri, Suraj.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Electrical engineering.;Mining engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 57 p.
  • 总页数 57
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号