首页> 外文学位 >Optimized tooling design algorithm for sheet metal forming over reconfigurable compliant tooling.
【24h】

Optimized tooling design algorithm for sheet metal forming over reconfigurable compliant tooling.

机译:针对可重构兼容工具进行钣金成形的优化工具设计算法。

获取原文
获取原文并翻译 | 示例

摘要

Sheet metal stretch forming is a plastic deformation process involving controlled stretching and bending around dies to produce accurately contoured parts. New forming technologies based on compliant reconfigurable tooling are available for this process, but there is a need for a formalism that can accurately predict the three-dimensional shape of the required tooling, a priori. In this thesis, a finite element modeling and simulation system has been developed for numerical simulations of sheet metal stretch forming over compliant “discrete-die” reconfigurable tools. The simulation system takes into account the deformation of the compliant polymeric layer. A robust tooling design algorithm has been developed that is based on an inverse springback approach that uses the elastic-plastic stress state prior to unloading to elastically deform the sheet in a direction opposite to springback. The resulting algorithm is thus referred to as the “spring forward” method. The optimized tooling design algorithm, developed as part of this thesis, is based on improving the convergence behavior of the spring forward method using an interpolation scheme. The interpolation scheme uses prior iterations to predict spatially varying spring forward factor values that account for the local part shape error history. Using these values, a springback compensated tool shape is predicted by the spring forward method. The modified spring-forward method is a self-correcting tool shape prediction algorithm that estimates the spring forward factor values by fitting a quadratic relationship between the tool shape and the part shape errors. The optimized tooling design algorithm is extended to compliant dies by developing a method that corrects the die shape for polymer through the thickness compression. The compliant die shape is predicted by adding the polymer deformation to the initial die shape, such that, at the fully loaded state, the effective die shape is equal to the initial die shape. The algorithm was applied to large-scale airframe skin parts commonly found in aerospace structures. Two shapes were investigated, a 90-inch radius cylindrical die and a 90-inch radius spherical die. In both cases the predicted tool shape produced the desired part shape within the acceptable tolerance of ±0.030 inches.
机译:钣金拉伸成型是一种塑性变形过程,包括受控的拉伸和围绕模具的弯曲以生产轮廓精确的零件。基于兼容的可重新配置工具的新成型技术可用于此过程,但是需要一种形式,可以准确地先验地预测所需工具的三维形状。在本文中,开发了一种有限元建模和仿真系统,用于在兼容的“离散模具”可重构工具上进行钣金拉伸成形的数值模拟。该模拟系统考虑了顺应性聚合物层的变形。已经开发了一种强大的工具设计算法,该算法基于逆向回弹方法,该方法在卸载之前使用弹塑性应力状态使片材在与回弹相反的方向上弹性变形。因此,所得的算法称为“前移弹簧”方法。作为本文的一部分而开发的优化工具设计算法,是基于使用插值方案改善回弹法的收敛性的。插值方案使用先前的迭代来预测空间变化的弹簧正向系数值,该值考虑了局部零件形状误差历史。使用这些值,可以通过回弹法预测回弹补偿后的刀具形状。改进的前向弹簧方法是一种自校正工具形状预测算法,该算法通过拟合工具形状和零件形状误差之间的二次关系来估计前向弹簧系数值。通过开发一种通过厚度压缩来校正聚合物的模具形状的方法,将优化的模具设计算法扩展到适用的模具。通过将聚合物变形添加到初始模具形状中来预测顺应模具形状,使得在满载状态下,有效模具形状等于初始模具形状。该算法被应用于航空航天结构中常见的大型机身蒙皮部件。研究了两种形状,半径为90英寸的圆柱形模具和半径为90英寸的球形模具。在两种情况下,预测的工具形状都会在可接受的±0.030英寸公差内产生所需的零件形状。

著录项

  • 作者

    Anagnostou, Elias Louie.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Applied Mechanics.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号