首页> 外文学位 >Microstructural evolution in two-phase alloys: Experimental investigation and modeling of stochastic effects at finite volume fractions.
【24h】

Microstructural evolution in two-phase alloys: Experimental investigation and modeling of stochastic effects at finite volume fractions.

机译:两相合金的微观结构演变:有限体积分数下的随机效应的实验研究和建模。

获取原文
获取原文并翻译 | 示例

摘要

The study of microstructural evolution in two-phase alloy systems has been a vital component of modern materials science over the past few decades. The ability to understand and effectively control the microstructure of a material provides control over mechanical, physical and chemical properties during processes such as casting and liquid phase sintering. Phase coarsening, or Ostwald ripening, is a kinetic process occurring during the later stages of microstructural evolution. This is a competitive multiparticle diffusion process typically occurring among a dispersion of domains (particles) randomly distributed throughout a continuous matrix phase. Understanding the evolution of the average particle size and particle size distribution (PSD) is essential in order to accurately predict the final microstructures. In 1961, Lifshitz, Slyozov, and Wagner (TLSW) [1] formulated the classical theory of phase coarsening kinetics by relying on a variety of simplifying assumptions, such as spherical particles and, most importantly, an infinitely small volume fraction of the coarsening phase. In order to more accurately model the phase coarsening process, theories need to account for the effects of particle-particle interactions and of the “local” environment of each particle has on the overall kinetics of the system.; The first part of this study provides new experimental results on the liquid-solid phase coarsening of Ag-Cu alloys. Isothermal annealing of several different alloy compositions for various periods of time resulted in significant phase coarsening of the nearly spherical solid particles within the melt phase. Large areas of the annealed microstructures were analyzed using digital image processing techniques to provide statistically large amounts of raw data. The growth rate of the average particle volume was found to scale linearly with the cube-root of time, in agreement with theoretical predictions and other experimental studies. The experimental PSD's showed a strong deviation from theory, following the same behavior reported in other coarsening studies. The shape of the 3-D PSD's is somewhat erratic and the indication of time invariance and time-invariant behavior, present in the 2-D PSD's, is not as clear after applying the stereological transformation process.; Coarsening rates based on radii measurements exhibited a slight volume fraction dependence but did not agree with the theoretical predictions. By contrast, the coarsening rates derived from the analysis involving the surface area density showed close agreement with the predictions from mean-field theories. These results, along with the particle size distribution results, suggest that the kinetic analysis based on the radii measurements contains significant uncertainties and sources of error. However, the analysis based on the decay of the surface area is more robust and provides a straightforward method by which to quantify microstructural evolution. Experimental results for the coarsening rate behavior also provide the first significant experimental support for the validity of the mean-field approach proposed by Marsh and Glicksman [2] and their suggestion that “direct Laplacian screening” limits interaction distances among particles in a dense microstructure, in clear distinction with diffusional “Debye screening” that occurs in microstructures with relatively low volume fractions.; The second part of the study focuses on computer simulations of phase coarsening in very dilute two-phase systems. Computer simulations based on a multiparticle diffusion model, which incorporates the effect of the ‘local’ environment on the individual particle growth rates was performed for systems of 500 particles. The results reveal that the growth rates of particles with the same radii can differ, in contrast to the mean-field theoretical predictions. A stochastic flux function is used in an effort to quantify the stochastic behav
机译:在过去的几十年中,对两相合金系统的微观结构演变的研究一直是现代材料科学的重要组成部分。理解和有效控制材料微观结构的能力提供了对诸如铸造和液相烧结等过程中的机械,物理和化学性质的控制。相变粗化或奥斯特瓦尔德熟化是在微观结构演变的后期发生的动力学过程。这是一个竞争性的多粒子扩散过程,通常发生在整个连续基质相中随机分布的域(粒子)的分散体中。为了准确预测最终的微观结构,了解平均粒径和粒径分布(PSD)的演变至关重要。 1961年,Lifshitz,Slyozov和Wagner(TLSW)[1]依靠各种简化的假设(例如球形粒子,最重要的是,无限大的粗化相体积分数),制定了经典的相粗化动力学理论。 。为了更准确地模拟相粗化过程,理论需要考虑粒子间相互作用以及每个粒子的“局部”环境对系统整体动力学的影响。本研究的第一部分提供了有关Ag-Cu合金液相固相粗化的新实验结果。在不同的时间段内对几种不同合金成分进行等温退火会导致熔融相中接近球形的固体颗粒发生明显的相粗化。使用数字图像处理技术分析了大面积的退火微结构,以提供统计上大量的原始数据。发现平均颗粒体积的增长率与时间的立方根成线性比例,这与理论预测和其他实验研究一致。遵循其他粗化研究报告的相同行为,实验性PSD显示出与理论的强烈偏离。 3-D PSD的形状有些不稳定,并且在应用立体变换过程后,2-D PSD中存在的时间不变性和时间不变行为的指示并不清晰。基于半径测量的粗化速率显示出轻微的体积分数依赖性,但与理论预测不一致。相比之下,从涉及表面积密度的分析得出的粗化率与平均场理论的预测结果非常吻合。这些结果以及粒度分布结果表明,基于半径测量的动力学分析包含明显的不确定性和误差来源。但是,基于表面积衰减的分析更加可靠,并且提供了一种直接的方法来量化微观结构的演变。粗化速率行为的实验结果也为Marsh和Glicksman提出的平均场方法的有效性提供了第一个重要的实验支持[2],他们的建议是“直接拉普拉斯筛查”会限制致密微观结构中颗粒之间的相互作用距离,与在体积分数相对较低的微结构中发生的扩散“德拜筛选”明显不同;研究的第二部分重点研究非常稀薄的两相系统中相粗化的计算机模拟。针对500个粒子的系统,进行了基于多粒子扩散模型的计算机模拟,该模型结合了“局部”环境对单个粒子生长速率的影响。结果表明,与平均场理论预测相反,具有相同半径的粒子的增长率可能不同。随机通量函数用于量化随机行为

著录项

  • 作者

    Crawford, Paula Jean.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号