首页> 外文学位 >Flow structure, droplet formation and dispersion when an interface separating immiscible fluids is impinged with a vertical negatively buoyant jet.
【24h】

Flow structure, droplet formation and dispersion when an interface separating immiscible fluids is impinged with a vertical negatively buoyant jet.

机译:当分离不混溶流体的界面受到垂直负浮力射流的撞击时,流动结构,液滴形成和分散。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation summarizes a series of experiments to determine the effects of impinging a water and diesel fuel interface with a negatively buoyant water jet. The maximum depth that the jet penetrates is only a function of a pipe exit Richardson number divided by a jet spreading factor, which is only a function of distance between the jet exit and the interface. As long as the jet is turbulent, the penetration depth is independent of Reynolds and Weber numbers. A universal correlation developed in this study relates the penetration depth of jets in any fluid systems.; The macroscopic flow structure is categorized into distinct flow regimes that are dependent on an interface Richardson number, Rii. At high Rii the jet forms a smooth and stable deformation in the interface with no flow separation and no droplet formation. At moderate Rii the deformation becomes taller and steeper and a flow separation develops at its edge. An oil lip created at the flow separation sometimes detaches to form oil droplets in the water below. At lower Rii the deformation becomes unstable and alternately collapses and reforms. Droplets result when the collapsing deformation impacts the interface and drags down fingers of oil. Droplet size distributions are lognormal and depend on Rii, Re , viscosity ratio and Morton number. Mode diameters range from 0.6mm to 1.5mm.; Experiments demonstrate that the mean droplet rise-rate, Ū , varies between 0.2 to five times the rise-rate in quiescent fluid, Uq, increasing with decreasing diameter. At high turbulence intensity, u, Ū asymptotically approaches 0.25u, while at low u, Ū asymptotically approaches Uq. At intermediate u, Ū is a strong function of Stokes number, St. In this case, at low St, Ū = Uq, while at high St, Ū Uq. Data from this study is the first to show an enhancement of rise-rate of droplets that are less dense than the continuous phase. Trends are explained in terms of trajectory biasing and non-linear drag effects.
机译:本文总结了一系列实验,以确定负浮力水射流撞击水和柴油燃料界面的影响。射流穿透的最大深度仅是管道出口理查森数除以射流扩散因子的函数,射流扩散因子仅是射流出口与界面之间距离的函数。只要射流是湍流的,穿透深度就与雷诺数和韦伯数无关。在这项研究中发展的普遍相关性涉及任何流体系统中射流的穿透深度。宏观流动结构可分为不同的流动形式,这取决于界面理查森数 Ri i 。在 Ri i 处,射流在界面处形成平稳平稳的变形,没有流动分离和液滴的形成。在中等 Ri i 处,变形变得越来越高和陡峭,并且在其边缘形成了流动分离。在分流处产生的油唇有时会脱落,在下面的水中形成油滴。在较低的 Ri i 处,变形变得不稳定,并交替塌陷和变形。当塌陷变形影响界面并向下拖油时,会产生液滴。液滴尺寸分布呈对数正态分布,并取决于 Ri i ,R e ,粘度比和莫顿数。模式直径范围从0.6mm至1.5mm。实验表明平均液滴上升率Ū 的变化幅度为静态流体 U q 的上升速率的0.2到5倍,随直径的减小而增大。在高湍流强度下, u 'Ū 渐近地接近0.25 u ' ,而 u '较低时,Ū 渐近地接近 U q 。在中间 u 'Ū 是斯托克斯数 St 的强大函数。在这种情况下,在 St低时,Ū = U q ,而 St高时,Ū U q 。这项研究的数据首次显示出密度比连续相小的液滴上升速率有所提高。根据轨迹偏差和非线性阻力效应来解释趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号