首页> 外文学位 >Boundary value problems in electrophoresis, with applications to separations and colloid science.
【24h】

Boundary value problems in electrophoresis, with applications to separations and colloid science.

机译:电泳中的边值问题,应用于分离和胶体科学。

获取原文
获取原文并翻译 | 示例

摘要

The topic of this thesis is investigation of models applied to different aspects of separations and colloid science. Many tools are used for solving the models, which are manifested as boundary value problems. The problems are to determine the equilibrium electrostatics of a fluid droplet, the electrokinetics of such, the (nonuniform) temperature profile of an electrophoresis capillary due to Joule heating, and the temperature at the wall of the capillary. In the fluid drop model, special attention given to a drop that, in addition to the surrounding fluid, supports electrolytes. Matched asymptotic expansions based on thin double layers are applied to the equilibrium electrostatics problem. Attention is given to how conditions on the interface of the drop, such as discontinuity of equilibrium potential and the presence of surface excesses of solutes, affect the electrokinetics. A perturbation scheme is used to formulate a problem for the electrophoretic mobility of a droplet. An approximate solution for the mobility of a drop is derived, based on small interfacial potentials. The formula encompasses those of several past theoretical studies. A regular perturbation is used to determine heating effects in capillary electrophoresis, based on a small power input to the system. The resulting expression for temperature in the capillary is then used implicitly to determine the temperature at the wall of the capillary. Some of the results are compared with experimental data. For the drop electrophoresis problem, the electrophoretic mobility formula is compared with measured mobility of oil drops and drops in aqueous two-phase systems. In the study of heating in capillary electrophoresis, the implicit expression is used to make reasonable estimates of the wall temperature based on published operating conditions. Accuracy of all analytic estimates of the problems are tested against numerical solutions, taken to be exact. In all cases, the analytic approximations are satisfactorily accurate under appropriate conditions.
机译:本文的主题是对应用于分离和胶体科学不同方面的模型的研究。使用许多工具来求解模型,这些工具表现为边值问题。问题在于确定液滴的平衡静电,其电动力学,由于焦耳热引起的电泳毛细管的(非均匀)温度分布以及毛细管壁上的温度。在液滴模型中,除了周围的流体外,还特别注意支持电解质的液滴。将基于薄双层的匹配渐近展开应用于平衡静电问题。注意液滴界面上的条件(例如,平衡电位的不连续和溶质表面过量的存在)如何影响电动动力学。使用微扰方案来提出液滴的电泳迁移率的问题。基于较小的界面电位,得出了液滴流动性的近似解决方案。该公式涵盖了过去几项理论研究的公式。基于向系统的少量输入,使用常规扰动确定毛细管电泳中的加热效果。然后隐式使用毛细管中温度的结果表达式来确定毛细管壁上的温度。一些结果与实验数据进行了比较。对于液滴电泳问题,将电泳迁移率公式与油滴和含水两相系统中的液滴的测得迁移率进行比较。在毛细管电泳加热的研究中,根据公开的操作条件,使用隐式表达式对壁温进行合理估计。问题的所有分析估计的准确性均与数值解决方案进行了测试,被认为是准确的。在所有情况下,解析近似值在适当的条件下均令人满意。

著录项

  • 作者

    Erker, Joseph A.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Mathematics.; Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号