首页> 外文学位 >Identification and fate of mixed ozonation/chlorination and ozonation/chloramination by-products in drinking water treatment.
【24h】

Identification and fate of mixed ozonation/chlorination and ozonation/chloramination by-products in drinking water treatment.

机译:饮用水处理中混合臭氧化/氯化和臭氧化/氯化副产物的鉴定和结局。

获取原文
获取原文并翻译 | 示例

摘要

Disinfection may cause a dilemma for drinking water treatment plants using chlorine for the maintenance of a disinfectant residual in distribution systems. On one hand the chlorine residual should ensure microbially safe drinking water, but on the other hand harmful disinfection by-products (DBPs) can be formed from the reaction of natural organic matter (NOM) with chlorine.; Many utilities are looking to the combined use of ozonation for primary disinfection, followed by chlorine or chloramines as a means of minimizing DBP formation while maintaining a stable disinfectant residual. However, these combinations may lead to a new spectrum of by-products that differs from that produced when a single disinfectant is used. The formation of mixed ozonation/chlorination and ozonation/chloramination by-products is the subject of this dissertation.; A diverse collection of precursor compounds that produce a large amount of “unknown” total organic halides (TOX) was identified by performing bench scale tests to simulate chlorination of known ozonation by-products. Simple mono- and di-carboxylic acids were not found to react with chlorine. Di-aldehydes, α-keto-acids, and α-hydroxy-acids are oxidized by chlorine but do not show TOX formation. However, chlorine does become incorporated in β-diketones. Oxalacetic acid, 3-methyl-2,4-pentanedione, acetonedicarboxylic acid, and malic acid were found to form more “unknown TOX” than common chlorination by-products. Usually, the chlorine demand as well as the TOX increase with decreasing pH and increasing chlorination time.; The identification of “unknown TOX” was the second major goal of this work. Quenched samples from the model compound studies were derivatized with pentafluorobenzylhydroxylamine (PFBHA), extracted with methyl-tert-butyl-ether (MtBE), and silylated with bis-(trimethylsilyl)-triflouroacetamine (BSTFA). Malic and acetonedicarboxylic acids were each found to produce a previously-unknown byproduct after reacting with chlorine. The identity of this and other new by-products was suggested based on the mass spectra. Surprisingly, mono-chlorinated species were found to be more abundant than di-chlorinated species in all cases.; The third phase of this research showed that a substantial amount of “unknown TOX” is also formed in distribution systems where chlorine is used as final disinfectant. The “unknown TOX” ranged between 60% and 80% of the measured TOX.
机译:消毒可能会给饮用水处理厂带来两难境地,后者使用氯来维持分配系统中残留的消毒剂。一方面,残留的氯应确保微生物安全的饮用水,但另一方面,天然有机物(NOM)与氯的反应会形成有害的消毒副产物(DBP)。许多公用事业公司正在寻求将臭氧处理技​​术用于一次消毒的组合,然后再使用氯气或氯胺作为最小化DBP形成的方法,同时保持稳定的消毒剂残留。但是,这些组合可能导致新的副产物谱,与使用单一消毒剂时产生的副产物谱有所不同。混合臭氧化/氯化和臭氧化/氯化副产物的形成是本论文的主题。通过执行台式规模试验来模拟已知臭氧化副产物的氯化反应,可以鉴定出产生大量“未知”总有机卤化物(TOX)的多种前体化合物。未发现简单的一元和二元羧酸与氯发生反应。二醛,α-酮酸和α-羟基酸会被氯氧化,但不会形成TOX。但是,氯的确掺入了β-二酮中。发现草酰乙酸,3-甲基-2,4-戊二酮,丙酮二羧酸和苹果酸比普通的氯化副产物形成更多的“未知TOX”。通常,氯的需求量和TOX随pH值的降低和氯化时间的增加而增加。识别“未知的TOX”是这项工作的第二个主要目标。将来自模型化合物研究的淬灭样品用五氟苄基羟胺(PFBHA)衍生化,用甲基叔丁基醚(MtBE)萃取,并用双(三甲基甲硅烷基)-三氟乙酰胺(BSTFA)进行甲硅烷基化。发现苹果酸和丙酮二羧酸在与氯反应后均会产生以前未知的副产物。根据质谱图表明了该副产物和其他新副产物的身份。令人惊讶的是,在所有情况下,发现单氯物种比二氯物种更为丰富。该研究的第三阶段表明,在使用氯作为最终消毒剂的分配系统中,还会形成大量的“未知TOX”。 “未知TOX”的范围为测得的TOX的60%至80%。

著录项

  • 作者

    Hartmann, Caroline M.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Engineering Environmental.; Engineering Sanitary and Municipal.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号