首页> 外文学位 >Determinants of helix orientation specificity in coiled coils.
【24h】

Determinants of helix orientation specificity in coiled coils.

机译:螺旋线圈中螺旋取向特异性的决定因素。

获取原文
获取原文并翻译 | 示例

摘要

Coiled coils are the most common oligomerization motif in naturally occurring proteins. An analysis of protein and DNA sequence databases has led to the estimate that 5–9% of proteins in sequenced genomes contain coiled coil domains and 1–3% of all amino acid residues in proteins occur in coiled coils. Given the growing importance of this class of proteins, it is necessary to understand the interactions that predict the structure and biological function of these proteins. This problem is complicated by the fact that coiled coils can self-associate or bind to heterologous partners; the helices can associate into two-, three-, or four-stranded structures; and finally, the helices can align in a parallel or antiparallel orientation.; We have made a series of model proteins to investigate the primary sequence features that lead to an increase in a parallel or antiparallel helix orientation preference. Residues at the a, d, e, and g positions define the interface between the helices and are important for determining coiled-coil specificity. In addition, the residues at these positions can participate in interhelical electrostatic and hydrophobic interactions. We have examined two different classes of interactions: interhelical Coulombic interactions between residues at the g and e positions and buried polar interactions.; We have explored the importance of Coulombic interactions between residues at the e and g positions. We used differential Coulombic interactions to set an antiparallel helix orientation preference. Our findings suggest that maintenance of all favorable electrostatic interactions and/or avoidance of two potentially repulsive interactions contributes approximately 2.1 kcal/mol to helix orientation preference.; We have also examined the importance of a salt bridge involving a buried charged residue. We have found that burying a polar Arg residue at an interior position has no influence on helix orientation, but does specify a dimeric state at a much lower thermodynamic cost than burial of a polar interaction.
机译:卷曲螺旋是天然蛋白质中最常见的低聚基序。对蛋白质和DNA序列数据库的分析得出的估计结果是,测序基因组中5–9%的蛋白质包含卷曲螺旋域,蛋白质中所有氨基酸残基的1-3%发生在卷曲螺旋中。鉴于这类蛋白质的重要​​性日益增加,有必要了解预测这些蛋白质的结构和生物学功能的相互作用。由于盘绕的线圈可以自缔合或与异源伴侣结合,这一问题使问题变得复杂。螺旋可以缔合为二,三或四链结构;最后,螺旋线可以平行或反平行排列。我们已经制作了一系列模型蛋白来研究导致平行或反平行螺旋方向偏好增加的主要序列特征。 a d e g 位置的残基定义了螺旋之间的界面,对于确定卷曲螺旋特异性。另外,这些位置上的残基可以参与螺旋间的静电和疏水相互作用。我们研究了两种不同的相互作用:在 g e 位置的残基之间的螺旋间库仑相互作用和掩埋极性相互作用。我们已经研究了 e g 位置残基之间库仑相互作用的重要性。我们使用微分库仑相互作用来设置反平行螺旋方向偏好。我们的发现表明,维持所有有利的静电相互作用和/或避免两个潜在的排斥相互作用,对螺旋取向的偏爱贡献约为2.1kcal / mol。我们还研究了盐桥涉及掩埋带电残渣的重要性。我们已经发现,在内部位置掩埋极性Arg残基对螺旋取向没有影响,但是确实以比掩埋极性相互作用低得多的热力学成本指定了二聚态。

著录项

  • 作者

    McClain, Diana Leigh.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Chemistry Biochemistry.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号