首页> 外文学位 >Electrochemical characteristics of metal hydride electrodes for nickel/metal hydride rechargeable batteries.
【24h】

Electrochemical characteristics of metal hydride electrodes for nickel/metal hydride rechargeable batteries.

机译:镍/金属氢化物可充电电池用金属氢化物电极的电化学特性。

获取原文
获取原文并翻译 | 示例

摘要

The electrochemical characteristics of LaNi4.7Al 0.3, LaNi4.7Al0.3 (with Cu-coating), Mm0.95 Ti0.05Ni3.85Co0.45Mn0.35Al 0.35 and Mm(Ni0.71Co0.14Al0.08Mn 0.06)5.02 alloy electrodes are examined in detail. The specific discharge capacity of the cell made using the LaNi4.7Al0.3 , Mm0.95Ti0.05Ni3.85Co0.45Mn 0.35Al0.35 and Mm(Ni0.71Co0.14Al 0.08Mn0.06)5.02 alloys maintain 250 mAh g −1 at 100–120 mA g−1 discharge current density after 20, 40 and 200 cycles respectively. Thus with regard to cycle lifetime the Mm(Ni0.71Co0.14Al0.08Mn 0.06)5.02 and Mm0.95Ti0.05Ni3.85 Co0.45Mn0.35Al0.35 alloys are considerably superior to LaNi4.7Al0.3 alloy. At the same number of cycles, all the electrochemical properties are related to the hydrogen concentration, i.e., depth of discharge (DOD). As the hydrogen concentration decreases, the exchange current density, the apparent activation energy, the hydrogen diffusion coefficient and the symmetry factor increase. The equilibrium potential increases (i.e. becomes more positive) with decreasing hydrogen concentration.; Almost all the electrochemical properties are temperature related. As the temperature increases, both the exchange current density and the symmetry factor increase. The specific discharge capacity reaches a maximum value at room temperature for the Mm(Ni0.71Co0.14Al0.08 Mn0.06)5.02 alloy. The equilibrium potential decreases with increasing temperature. With increasing number of cycles, the exchange current density, the ratio of D/a2 ( D = hydrogen diffusivity; a = sphere radius) and the equilibrium potential increase with cycles, stabilizing after 30–40 cycles. Cu-coating of the electrode alloys increases the exchange current density and the high-rate dischargeability of the metal hydride electrodes, and decreases the discharge potential, especially for higher discharge current densities. The discharge potentials for the Cu-coated electrode showed little change with discharge current density differences, indicating the stabilizing effect of Cu-coating on the battery performance.; A theoretical treatment is derived to account for the two-phase (α-β) region of pressure-composition (P-C) isotherms of hydrogen-absorbing alloys by considering H-H interaction kinetics. Based on electrochemical reaction kinetics, a theoretical model on the relationship between equilibrium potential and hydrogen concentration is established for the equilibrium discharge process of a MH electrode. The relationship between equilibrium potential of a metal hydride electrode reaction and hydrogen pressure in a gaseous hydrogen environment is also derived and thus, E-C-T curves can be accurately transferred to P-C-T curves and vice versa. These theoretical equations are of particular use in evaluating suitable electrode alloys.; A novel and relatively simple electrochemical method, called “Potential Step Chrono-Amperometry (PSCA)” method, is developed to determine the hydrogen diffusion coefficient and its variation with hydrogen concentration. Using this method, the value of the room temperature diffusion coefficient of hydrogen in a LaNi4.7Al0.3 alloy is found to be in the range of 3.1 × 10−14 to 8.6 × 10 −13 m2 s−1, and
机译:LaNi 4.7 Al 0.3 ,LaNi 4.7 Al 0.3 (带铜涂层),Mm < sub> 0.95 Ti 0.05 Ni 3.85 Co 0.45 Mn 0.35 Al 0.35 和Mm(Ni 0.71 Co 0.14 Al 0.08 Mn 0.06 5.02 详细检查合金电极。 LaNi 4.7 Al 0.3 ,Mm 0.95 Ti 0.05 Ni 3.85 Co 0.45 Mn 0.35 Al 0.35 和Mm(Ni 0.71 Co 0.14 Al 0.08 Mn 0.06 5.02 合金在100–120 mA时可维持250 mAh g -1 g -1 分别在20、40和200次循环后的放电电流密度。因此,关于循环寿命,Mm(Ni 0.71 Co 0.14 Al 0.08 Mn 0.06 5.02 和Mm 0.95 Ti 0.05 Ni 3.85 Co 0.45 Mn 0.35 Al 0.35 合金明显优于LaNi 4.7 Al 0.3 合金。在相同的循环次数下,所有的电化学性质都与氢浓度,即放电深度(DOD)有关。随着氢浓度的降低,交换电流密度,表观活化能,氢扩散系数和对称因子增加。平衡电位随着氢浓度的降低而增加(即变得更正)。几乎所有的电化学性质都与温度有关。随着温度升高,交换电流密度和对称因子均增加。 Mm(Ni 0.71 Co 0.14 Al 0.08 Mn 0.06 在室温下的比放电容量达到最大值>) 5.02 合金。平衡电位随温度升高而降低。随着循环次数的增加,交换电流密度, D / a 2 之比( D =氢扩散系数; a < /斜体> =球体半径),平衡电位随周期增加,在30–40个周期后稳定下来。电极合金的铜涂层增加了交换电流密度和金属氢化物电极的高倍率放电能力,并降低了放电电势,特别是对于更高的放电电流密度而言。涂铜电极的放电电位随放电电流密度差的变化很小,表明涂铜对电池性能的稳定作用。通过考虑H-H相互作用动力学,推导了理论处理以解释吸氢合金的压力组成( P-C )等温线的两相(α-β)区域。基于电化学反应动力学,建立了MH电极平衡放电过程中平衡电位与氢浓度之间关系的理论模型。还推导了金属氢化物电极反应的平衡电位与气态氢气环境中氢气压力之间的关系,因此, ECT 曲线可以准确地转换为 PCT 曲线,反之反之亦然。这些理论方程式在评估合适的电极合金时特别有用。开发了一种新颖且相对简单的电化学方法,称为“电位步进计时电流法(PSCA)”,以确定氢扩散系数及其随氢浓度的变化。使用此方法,发现LaNi 4.7 Al 0.3 合金中氢的室温扩散系数的值在3.1×10 -的范围内14 至8.6×10 -13 m 2 s -1

著录项

  • 作者

    Feng, Feng (Peter).;

  • 作者单位

    University of Windsor (Canada).;

  • 授予单位 University of Windsor (Canada).;
  • 学科 Engineering Materials Science.; Energy.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号