首页> 外文学位 >Some challenges in ethylene polymerization: Particle overheating in gas phase reactors, and modeling ethylene polymerization over nickel-diimine catalysts.
【24h】

Some challenges in ethylene polymerization: Particle overheating in gas phase reactors, and modeling ethylene polymerization over nickel-diimine catalysts.

机译:乙烯聚合中的一些挑战:气相反应器中的颗粒过热,以及在镍二亚胺催化剂上模拟乙烯聚合。

获取原文
获取原文并翻译 | 示例

摘要

The first part of this research deals with particle overheating, a severe process issue in heterogeneous olefin polymerization reactors. Insufficient heat removal in heterogeneous polymerizations can lead to melting of polymer particles, potentially causing temperature runaways or reactor downtime. Particle overheating is most severe in gas phase polyethylene reactors due to high activity catalysts and ineffective heat transfer across the particle boundary layer. The research herein combines modeling and experimental work to evaluate addition of inert species to the gas mixture while increasing the total pressure as a way to mitigate particle overheating without sacrificing productivity or product quality. Heat transfer from growing polymer particles is improved through increased gas density, and particle swelling through enhanced sorption of inert species into the polymer. Ethylene homopolymerization experiments are conducted at constant monomer partial pressure, both in the presence and absence of inert species. Without inert species, the rate profiles exhibit increased decay, most notably at higher temperatures. When inert species are present, the rate profiles are comparatively flat, indicating a reduction in particle overheating.; The second part of this work focuses on modeling ethylene polymerization over nickel-diimine catalysts. The development of these new catalysts is important because of their potential to polymerize polar monomers and their ability produce a broad range of product densities from homopolymerization of ethylene. The polyethylene produced from these catalysts can exhibit a unique range of properties. Branching is obtained in the absence of comonomer. Furthermore, by varying the reaction temperature and pressure, the degree of branching can be radically affected such that from atactic to semi-crystalline polymer can be produced. The "chain walking" branching mechanism, describes the migration of the active site from the chain terminus to interior carbons in the chain leading to branch formation upon monomer insertion. A deterministic model for ethylene polymerization is developed to describe the chain walking mechanism and the overall kinetic behavior exhibited by these catalysts. The model is incorporated into existing polymerization reactor process models to predict end polymer properties from reactor operating conditions, and to determine the important process issues associated with using these new catalysts.
机译:这项研究的第一部分涉及颗粒过热,这是异构烯烃聚合反应器中的一个严重的工艺问题。非均相聚合中的热量去除不足会导致聚合物颗粒熔化,从而可能导致温度失控或反应器停机。由于高活性催化剂和穿过颗粒边界层的无效传热,在气相聚乙烯反应器中颗粒过热最严重。本文的研究结合了建模和实验工作,以评估向气体混合物中添加惰性物质的同时增加总压力,以此作为减轻颗粒过热而不牺牲生产率或产品质量的一种方式。通过增加气体密度,可改善生长中的聚合物颗粒的传热,并通过增强惰性物质到聚合物中的吸附来使颗粒溶胀。乙烯均聚实验是在存在和不存在惰性物质的条件下,在恒定的单体分压下进行的。在没有惰性物质的情况下,速率分布表现出增加的衰减,特别是在较高温度下。当存在惰性物质时,速率分布比较平坦,表明颗粒过热减少。这项工作的第二部分着重于在镍-二亚胺催化剂上模拟乙烯聚合。这些新型催化剂的开发非常重要,因为它们具有聚合极性单体的潜力,并且它们能够从乙烯的均聚反应中产生广泛的产物密度。由这些催化剂生产的聚乙烯可以表现出独特的性能范围。在不存在共聚单体的情况下获得支链。此外,通过改变反应温度和压力,可以从根本上影响支化度,从而可以生产从无规到半结晶的聚合物。 “链行走”分支机理描述了活性位点从链末端向链中内部碳的迁移,导致单体插入时形成分支。建立了乙烯聚合反应的确定性模型,以描述这些催化剂表现出的链行走机理和整体动力学行为。该模型被并入现有的聚合反应器过程模型中,以根据反应器的运行条件预测最终聚合物的性能,并确定与使用这些新型催化剂相关的重要过程问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号