首页> 外文学位 >Geometric algorithms for analyzing and controlling swarms of robots and groups of aircraft.
【24h】

Geometric algorithms for analyzing and controlling swarms of robots and groups of aircraft.

机译:用于分析和控制机器人和飞机群的几何算法。

获取原文
获取原文并翻译 | 示例

摘要

The first two parts of the dissertation focuses on the dispersion problem of robot swarms: Given an unknown environment, expand a swarm of robots in the environment such that the area of the environment visible to the robots is maximized, while the swarm remains connected.; We first discuss the dispersion problem in the case where robots move along discrete directions, then propose and compare different algorithms in the case of continuous movement. In both cases the robots are assumed to have limited capabilities of sensing, communicating, and computing.; In the discrete dispersion, the swarm is initially outside the environment and robots enter the environment through multiple doors. We proposed optimal algorithms for the case where at most one robot can enter the environment at any time. When there can be multiple robots enter the doors, we proposed an algorithm that completes dispersion in a log factor time compared to the offline optimal situation. We also provide a matching lower bound for any algorithm using strictly local information.; In the continuous dispersion, the robots start as a dense swarm that is placed somewhere inside the environment. We propose and compare different algorithms with various performance metrics through simulation. These algorithms assume no direct communications among robots and all moving decisions are made strictly from gathered sensory information.; The last part of the dissertation studies an airplane rerouting problem: The airspace is often partially blocked by some hazardous weather and airplanes can only fly using the remained safe region. We would like to efficiently utilize the flyable region to minimize the number of flights that may be canceled due to the weather situation. We compare the performance of free flight resolution and another method using organized flow of flights.
机译:本文的前两部分着眼于机器人群的分散性问题:在未知的环境下,在该环境中扩展机器人群,以使机器人可见的环境区域最大化,而群体仍保持连接。我们首先讨论机器人沿离散方向运动时的色散问题,然后提出并比较连续运动情况下的不同算法。在两种情况下,都假定机器人的感测,通信和计算能力有限。在离散分散中,群体最初位于环境外部,而机器人则通过多个门进入环境。对于最多一个机器人可以随时进入环境的情况,我们提出了最佳算法。当可以有多个机器人进入门时,我们提出了一种算法,与离线最佳情况相比,该算法可以在对数因子时间内完成分散。我们还为使用严格本地信息的任何算法提供了匹配的下限。在连续分散中,机器人从放置在环境中某个地方的密集蜂群开始。我们提出并通过仿真比较具有不同性能指标的不同算法。这些算法假定机器人之间没有直接通信,并且所有移动决策都是严格根据收集的感官信息做出的。论文的最后一部分研究了飞机改航的问题:某些危险天气经常会部分限制空域,并且飞机只能在安全区域内飞行。我们想有效利用可飞行区域,以将因天气情况而可能取消的航班数量降至最低。我们比较了免费航班解析的效果和使用有组织的航班流程的另一种方法的效果。

著录项

  • 作者

    Hsiang, Tien-Ruey.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Operations Research.; Computer Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 运筹学;自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号