首页> 外文学位 >Development and application of full-wave time-domain numerical modeling techniques for the analysis of linear and nonlinear photonic micro/nanostructures.
【24h】

Development and application of full-wave time-domain numerical modeling techniques for the analysis of linear and nonlinear photonic micro/nanostructures.

机译:全波时域数值建模技术在线性和非线性光子微观/纳米结构分析中的开发和应用。

获取原文
获取原文并翻译 | 示例

摘要

With the advent of mesoscale materials processing techniques, photonic devices can be realized with micron- or sub-micron dimensions. As the dimensions are reduced to the scale of the optical wavelength, electromagnetic wave interactions become more complex. First-principles computational modeling tools help to understand the underlying physics in such devices. Moreover, these tools provide an invaluable virtual lab environment where novel device concepts are explored and optimized before fabrication. This dissertation addresses the development and application of such numerical techniques for modeling electromagnetic interactions in photonic micro/nanostructures.; The numerical tools for modeling vertical-cavity surface-emitting lasers (VCSELs) are based on the finite-difference time-domain (FDTD) method implemented in cylindrical coordinates. Uniaxial perfectly matched layer absorbing boundary conditions are optimized for the cylindrical-coordinates FDTD using a global-error analysis. The computational efficiency is improved with an FFT/Padé interpolation technique that permits cold-cavity modal characteristics to be extracted from the early-time response, thereby reducing the overall computation time. A comprehensive analysis of simplified antiresonant reflecting optical waveguide VCSELs is conducted using this numerical technique. Design parameters are optimized for single-mode operation. Simulation results predict strong modal discrimination in favor of the fundamental mode for a large aperture and a large built-in index step.; Nonlinear frequency conversion processes are very sensitive to the phase velocities of interacting optical waves. Accurate modeling of such problems using FDTD requires extremely fine grid resolutions to minimize numerical dispersion errors. This dissertation proposes an alternative approach based on a pseudo-spectral time-domain (PSTD) method. Nonlinear PSTD schemes with second- and fourth-order time-stepping are developed. Benchmark simulations demonstrate significant improvements in computational efficiency and accuracy over FDTD. The nonlinear PSTD algorithms are further augmented to include linear material dispersion. One-dimensional PSTD modeling is used to analyze ultrashort pulse propagation in periodically poled LiNbO3. Two-dimensional PSTD models are used to investigate angle-dependent frequency conversion processes in a tilted quasi-phase-matching grating. These models are also used to model second-harmonic generation in nonlinear photonic crystals. The circular and hexagonal poling patterns are optimized for a maximum frequency conversion efficiency.
机译:随着中尺度材料加工技术的出现,可以实现具有微米或亚微米尺寸的光子器件。随着尺寸减小到光学波长的大小,电磁波相互作用变得更加复杂。第一性原理计算建模工具有助于了解此类设备的基本物理原理。此外,这些工具提供了宝贵的虚拟实验室环境,在制造之前,就可以探索和优化新颖的设备概念。本论文致力于光子微/纳米结构中电磁相互作用建模的数值技术的发展和应用。用于建模垂直腔面发射激光器(VCSEL)的数值工具基于在圆柱坐标中实现的有限差分时域(FDTD)方法。使用全局误差分析,优化了圆柱坐标FDTD的单轴完美匹配层吸收边界条件。使用FFT /Padé插值技术提高了计算效率,该技术允许从早期响应中提取冷腔模态特征,从而减少了总体计算时间。使用这种数值技术对简化的反谐振反射光波导VCSEL进行了全面分析。设计参数针对单模式操作进行了优化。仿真结果预测,对于大孔径和大内置索引阶跃,基本模态将受到强烈的模态鉴别。非线性频率转换过程对相互作用的光波的相位速度非常敏感。使用FDTD对此类问题进行精确建模需要极高的网格分辨率,以最大程度地减小数值分散误差。本文提出了一种基于伪谱时域(PSTD)方法的替代方法。开发了具有二阶和四阶时间步长的非线性PSTD方案。基准仿真表明,与FDTD相比,计算效率和准确性有了显着提高。非线性PSTD算法进一步得到增强,以包括线性材料色散。利用一维PSTD模型分析了超极化脉冲在周期性极化的LiNbO 3 中的传播。二维PSTD模型用于研究倾斜准相位匹配光栅中与角度相关的频率转换过程。这些模型还用于建模非线性光子晶体中的二次谐波。圆形和六边形极化图案经过优化,可实现最大的频率转换效率。

著录项

  • 作者

    Lee, Tae-Woo.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Physics Optics.; Computer Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号