首页> 外文学位 >Design of radio frequency coils for magnetic resonance imaging applications: A computational electromagnetic approach.
【24h】

Design of radio frequency coils for magnetic resonance imaging applications: A computational electromagnetic approach.

机译:用于磁共振成像应用的射频线圈设计:一种计算电磁方法。

获取原文
获取原文并翻译 | 示例

摘要

The advancement of MRI as a radiological instrument has been associated with a constant drive towards higher magnetic field strengths resulting in higher operational frequencies. More powerful magnets bring the promise of enhanced signal to noise ratio, exquisite resolution, and reduced scan times. At the same time however, MRI at higher frequencies adds significant engineering complexities to the MRI experiment, most notably in designing safe, versatile, and high-performance radio frequency (RF) Coils.; In this work, computational and theoretical electromagnetic analysis of several RF coils used in MRI are presented at Larmor frequencies that range between 64 and 470 MHz representing clinical imaging at 1.5:11 Tesla. The electromagnetic interactions with phantoms and anatomically detailed head models, including a developed high-resolution human head mesh, are studied at different field strengths. The computational tool of choice here was the finite difference time domain (FDTD) method. Combined with measurements using an 8 Tesla MRI system, currently the most powerful clinical magnet in the world and a 1.5 Tesla system, the FDTD method is utilized to study, analyze, and eventually design RF coils. Innovative Engineering approaches using phased array techniques are presented to improve the performance of RF head coils in terms of transverse magnetic field uniformity and reduction of specific absorption rate for operation at 4.7 and 8 Tesla. Novel analytical derivations are presented to explain the source of the MR signal. The combination of the analytical derivations, FDTD modeling, experiments, and infrared imaging gives a new prospective onto the electromagnetics associated with low and high field clinical imaging.
机译:核磁共振成像技术作为放射学仪器的进步与不断提高磁场强度有关,从而导致了更高的工作频率。功能更强大的磁体带来了增强信噪比,出色分辨率和减少扫描时间的希望。但是,与此同时,较高频率的MRI为MRI实验增加了显着的工程复杂性,尤其是在设计安全,通用和高性能的射频(RF)线圈时。在这项工作中,对在MRI中使用的几个RF线圈的计算和理论电磁分析进行了介绍,其拉莫尔频率介于64和470 MHz之间,代表1.5:11 Tesla的临床成像。在不同的场强下,研究了人体模型与人体模型之间的电磁相互作用以及解剖学上详细的头部模型,包括已开发的高分辨率人类头部网格。这里选择的计算工具是时差有限差分法(FDTD)。结合使用世界上最强大的临床磁体8 Tesla MRI系统和1.5 Tesla系统进行的测量,FDTD方法用于研究,分析和最终设计RF线圈。提出了使用相控阵技术的创新工程方法,以改善RF头线圈的横向磁场均匀性并降低在4.7和8 Tesla下的比吸收率。提出了新颖的分析推导来解释MR信号的来源。分析推导,FDTD建模,实验和红外成像的结合为与低场和高场临床成像相关的电磁学提供了新的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号