首页> 外文学位 >Construction of a Pseudomonas aeruginosa dihydroorotase mutant and the discovery of a novel link between pyrimidine biosynthetic intermediates and the ability to produce virulence factors.
【24h】

Construction of a Pseudomonas aeruginosa dihydroorotase mutant and the discovery of a novel link between pyrimidine biosynthetic intermediates and the ability to produce virulence factors.

机译:铜绿假单胞菌双氢乳清酶突变体的构建和嘧啶生物合成中间体与产生毒力因子的能力之间的新型联系的发现。

获取原文
获取原文并翻译 | 示例

摘要

The ability to synthesize pyrimidine nucleotides is essential for most organisms. Pyrimidines are required for RNA and DNA synthesis, as well as cell wall synthesis and the metabolism of certain carbohydrates. Recent findings, however, indicate that the pyrimidine biosynthetic pathway and its intermediates maybe more important for bacterial metabolism than originally thought. Maksimova et al., 1994, reported that a P. putida M, pyrimidine auxotroph in the third step of the pathway, dihydroorotase (DHOase), failed to produce the siderophore pyoverdin. We created a PAO1 DHOase pyrimidine auxotroph to determine if this was also true for P. aeruginosa. Creation of this mutant was a two-step process, as P. aeruginosa has two pyrC genes (pyrC and pyrC2 ), both of which encode active DHOase enzymes. The pyrC gene was inactivated by gene replacement with a truncated form of the gene. Next, the pyrC2 gene was insertionally inactivated with the aacC1 gentamicin resistance gene, isolated from pCGMΩ. The resulting pyrimidine auxotroph produced significantly less pyoverdin than did the wild type. In addition, the mutant produced 40% less of the phenazine antibiotic, pyocyanin, than did the wild type. As both of these compounds have been reported to be vital to the virulence response of P. aeruginosa , we decided to test the ability of the DHOase mutant strain to produce other virulence factors as well. Here we report that a block in the conversion of carbamoyl aspartate (CAA) to dihydroorotate significantly impairs the ability of P. aeruginosa to affect virulence. We believe that the accumulation of CAA in the cell is the root cause of this observed defect. This research demonstrates a potential role for pyrimidine intermediates in the virulence response of P. aeruginosa and may lead to novel targets for chemotherapy against P. aeruginosa infections.
机译:合成嘧啶核苷酸的能力对于大多数生物都是必不可少的。嘧啶是RNA和DNA合成以及细胞壁合成和某些碳水化合物代谢所必需的。然而,最近的发现表明,嘧啶的生物合成途径及其中间体对于细菌代谢而言可能比最初认为的更为重要。 Maksimova ,1994年,报道了 P。途径第三步中的嘧啶营养缺陷型腐殖质M,即二氢乳清酶(DHOase),未能产生铁载体pyoverdin。我们创建了PAO1 DHOase嘧啶营养缺陷型,以确定对于 P是否同样如此。铜绿。产生此突变体的过程分为两个步骤,如 P。铜绿假单胞菌具有两个 pyrC 基因( pyrC pyrC2 ),均编码活性DHOase酶。通过用截短形式的基因替换基因,使 pyrC 基因失活。接着,用 aacC1 庆大霉素抗性基因插入 pyrC2 基因使其失活,该基因从pCGMΩ分离。所得嘧啶营养缺陷型产生的pyoverdin比野生型少。另外,与野生型相比,该突变体产生的吩嗪类抗生素氰菊酯减少了40%。因为据报道这两种化合物对于 P的毒力反应都至关重要。铜绿,我们决定测试DHOase突变菌株产生其他毒力因子的能力。在这里,我们报告说,将氨基甲酰基天冬氨酸盐(CAA)转化为二氢乳清酸酯的障碍显着损害 P的能力。铜绿会影响毒力。我们认为,CAA在细胞中的积累是这种观察到的缺陷的根本原因。这项研究表明嘧啶中间体在 P的毒性反应中具有潜在作用。铜绿,可能会导致针对 P的新型化疗靶标。铜绿感染。

著录项

  • 作者

    Brichta, Dayna Michelle.;

  • 作者单位

    University of North Texas.;

  • 授予单位 University of North Texas.;
  • 学科 Biology Molecular.; Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;微生物学;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号