首页> 外文学位 >I. Biophysical studies on PIN WW domains: A model for understanding folding and stability of beta-sheet proteins. II. Towards understanding templated beta-sheet self-assembly.
【24h】

I. Biophysical studies on PIN WW domains: A model for understanding folding and stability of beta-sheet proteins. II. Towards understanding templated beta-sheet self-assembly.

机译:I. PIN WW域的生物物理研究:了解β-折叠蛋白折叠和稳定性的模型。二。旨在了解模板化的Beta-sheet自组装。

获取原文
获取原文并翻译 | 示例

摘要

This thesis utilizes protein engineering and chemical synthesis to understand the many facets of β-sheet folding and stability. The introductory chapter describes the underlying forces driving protein folding, discusses biophysical methods for studying the proteins and peptides relevant to this thesis, introduces the PIN WW domain, a β-sheet miniprotein that serves as an ideal experimental system to evaluate protein folding and misfolding, and provides background on protein aggregation and amyloidosis.; Chapter 1 demonstrates that cyclization of the PIN1 WW domain, a 34-residue three-stranded β-sheet structure, leads to more stable β-sheets, despite removing a favorable electrostatic interaction between its termini. Optimization of the linker connecting the N- and C-termini using information based on the previously determined structures is important to achieve maximum stability.; Chapter 2 and Appendix A describes the incorporation of β-turn peptidomimetics into a β-sheet miniprotein. Many of the b-turn peptidomimetics are hydrophobic, thus there incorporation into proteins leaves them with less than perfect solubility properties. These studies reveal that a more polar analog of the dibenzofuran-based β-turn mimetic improved solubility and resistance to aggregation without compromising thermodynamic solubility.; Chapters 3 and 4 explore the influence of backbone hydrogen bonding on folding and stability of PIN WW domain. The importance of individual backbone hydrogen bonds was probed by amide-to-ester substitution using α-hydroxy acids that retains the naturally occurring side-chains and stereochemistry of the L-amino acids. The α-hydroxy acids can be synthesized by methods outlined in Appendix B. The removal of hydrogen bond donor has more influence than weakening of the hydrogen bond acceptor (amide to ester carbonyl). The extent of destabilization imparted by amide-to-ester substitutions is strongly context dependent. Backbone hydrogen bonding appears to lower the transition state energy of the WW domain as reflected by that amide-to-ester mutants have lower folding, rate than that of wt PIN.; Finally, Chapter 5 focuses on the development of small, simple peptidomimetics to study amyloid fibril formation. The peptidomimetic is comprised of a template, peptide strands, and end groups that can be varied to probed structural requirements for amyloidogenesis. The template holds the strands at a separation of approximately 10 Å, allowing corresponding hydrophobic side-chains in the strands to pack into a condensed U-shaped core, not stabilized by intramolecular hydrogen bonds.{09}Stacking of the U-shaped peptidomimetics is stabilized by intermolecular hydrogen boding and hydrophobic interactions between the inwardly directed side-chains in the core of the U-shaped peptidomimetic. The charge and composition of the end groups in combination with buffer composition influence higher order pacing of filaments.{09}Relative stability of all the peptidomimetics derived from their thermodynamic solubility is approximately 7 kcal/mol on average. Two forces, amphiphilicity and β-sheet propensity, enable the peptidomimetic to adopt micelle-like structure where hydrophobic core formed by hydrophobic side-chains and template is shielded by hydrophilic patches formed by hydrophilic side-chains and end groups.
机译:本文利用蛋白质工程和化学合成方法来了解β折叠折叠和稳定性的许多方面。介绍性章节介绍了驱动蛋白质折叠的潜在作用力,讨论了研究本文相关蛋白质和肽段的生物物理方法,介绍了PIN WW结构域(一种β-折叠微蛋白),可作为评估蛋白质折叠和错误折叠的理想实验系统,并提供蛋白质聚集和淀粉样变性病的背景。第1章表明,PIN1 WW结构域(具有34个残基的三链β-折叠结构)的环化可导致更稳定的β-折叠,尽管消除了其末端之间的良好静电相互作用。基于先前确定的结构,使用信息优化连接N末端和C末端的接头对于实现最大稳定性很重要。第2章和附录A描述了将β-turn肽模拟物掺入β-sheet微蛋白的过程。许多b-turn肽模拟物是疏水的,因此将其掺入蛋白质会使它们的溶解性不尽人意。这些研究表明,基于二苯并呋喃的β-turn模拟物的极性更强的类似物在不损害热力学溶解度的情况下提高了溶解度和抗聚集性。第3章和第4章探讨了骨架氢键对PIN WW结构域折叠和稳定性的影响。通过使用保留了天然存在的侧链和L-氨基酸立体化学的α-羟酸进行酰胺基酯取代,探讨了各个主链氢键的重要性。可以通过附录B中概述的方法合成α-羟基酸。氢键供体的去除比氢键受体(酰胺到酯的羰基)的弱化具有更大的影响。酰胺-酯取代所赋予的去稳定程度在很大程度上取决于环境。骨架氢键似乎降低了WW结构域的过渡态能量,这是由于酰胺-酯突变体的折叠率比wt PIN更低。最后,第5章着重研究小型,简单的拟肽药物,以研究淀粉样蛋白原纤维的形成。拟肽由模板,肽链和端基组成​​,可以根据淀粉样蛋白生成的探测结构要求而变化。模板可将链之间的间距保持在约10Å,从而使链中的相应疏水侧链堆积成稠密的U形核,而不受分子内氢键的稳定。{09} U形拟肽的堆积是通过分子间氢键合和U型拟肽核心中向内定向的侧链之间的疏水相互作用而稳定。端基的电荷和组成以及缓冲液的组成会影响长丝的高阶起搏。{09}由其热力学溶解度得出的所有拟肽模拟物的相对稳定性平均约为7 kcal / mol。两亲性和β-折叠倾向性使两种拟肽体具有胶束状结构,其中疏水性侧链和模板形成的疏水性核心被亲水性侧链和端基形成的亲水性斑块屏蔽。

著录项

  • 作者

    Deechongkit, Songpon.;

  • 作者单位

    The Scripps Research Institute.;

  • 授予单位 The Scripps Research Institute.;
  • 学科 Chemistry Organic.; Chemistry Biochemistry.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.3825
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号