首页> 外文学位 >The application of shadow mask evaporation in molecular electronics.
【24h】

The application of shadow mask evaporation in molecular electronics.

机译:荫罩蒸发在分子电子学中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The successful development of carbon-nanotube based nanoscale electronics during last decade has stimulated great interests in molecular electronics beyond nanotubes. This extension has been hindered by fabrication of molecular circuits with conventional e-beam lithography. We have developed a shadow mask evaporation (SME) method to fabricate sub-micrometer metallic electrodes and other structures without using lithographic resists (e.g. photoresist or electron beam resist). We have fabricated electrode pairs with gaps as small as 200 nm, and I will discuss a method that we believe will allow reproducible fabrication of gaps smaller than 10 nm. We have used these shadow masks in a resist-free process to contact DNA strands on mica, carbon nanotubes on Si, as well as to create an etch mask for fabricating 200 nm polymer nanowires. High bias transport measurement shows that the saturation current of metallic carbon nanotubes is always enlarged in a two-probe measurement and can be used to estimate contact resistance. Carbon nanotubes can endure high voltages as high as 40 V Nanotubes break down when the tube temperature reaches the burning temperature. For a micrometer-long nanotube, most of the heat generated by the current is dissipated through the substrate at high bias. The longer the nanotube, the higher voltage it can sustain. We also report fabrication of sub-30 nm conducting polymer nanofiber with tunable resistance. Characterization by scanning conductance microscopy shows the dependence of conductivity on nanofiber diameter. This is confirmed by transport measurements on nanofibers contacted by SME. Transport measurements also provide evidence for the formation of Schottky barriers at the fiber-electrode interface, leading to rectifying behavior in asymmetric fiber samples.
机译:在过去的十年中,基于碳纳米管的纳米级电子学的成功发展激发了除纳米管之外的分子电子学的巨大兴趣。通过使用常规电子束光刻技术制造分子电路,阻碍了这种扩展。我们已经开发出一种荫罩蒸发(SME)方法,以在不使用光刻胶(例如光刻胶或电子束光刻胶)的情况下制造亚微米级金属电极和其他结构。我们已经制造出缝隙小至200 nm的电极对,我将讨论一种我们认为可以重现小于10 nm的缝隙的方法。我们在无抗蚀剂工艺中使用了这些荫罩,以接触云母上的DNA链,硅上的碳纳米管,以及创建用于制造200 nm聚合物纳米线的蚀刻罩。高偏压传输测量表明,金属碳纳米管的饱和电流在两次探针测量中始终会增大,并且可用于估算接触电阻。当碳纳米管的温度达到燃烧温度时,碳纳米管可以承受高达40 V的高压。对于微米级的纳米管,由电流产生的大部分热量以高偏压耗散通过基板。纳米管越长,它可以承受的电压越高。我们还报告了具有可调电阻的亚30纳米导电聚合物纳米纤维的制造。通过扫描电导显微镜的表征显示了电导率对纳米纤维直径的依赖性。 SME接触到的纳米纤维的传输测量结果证实了这一点。传输测量也为在纤维-电极界面处形成肖特基势垒提供了证据,从而导致非对称纤维样品中的整流行为。

著录项

  • 作者

    Zhou, Yangxin.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Physics Condensed Matter.; Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.1778
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号