首页> 外文学位 >Adaptive feedback-feedforward control and sensor fault accommodation via neural networks for seismically loaded infrastructures.
【24h】

Adaptive feedback-feedforward control and sensor fault accommodation via neural networks for seismically loaded infrastructures.

机译:通过神经网络对地震负荷基础设施进行自适应反馈前馈控制和传感器故障适应。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation studies a new combined feedback-feedforward control algorithm for structural engineering applications. The controller contains both feedback and feedforward components. The feedback component is assumed to be the same as that found from traditional LQR design. The feedforward component is obtained by estimating the external excitation as series of step functions at each time increment. This feedforward gain varies with the duration of the step function used for estimation and converges as the time duration increases. Thus, a finite number of pre-calculated gains can be used to represent the potential feedforward gain profiles. At any instant in time, the excitation is measured and by using the past measurements, the most effective feedforward gain for the recorded excitation values can be selected from the set of pre-calculated gains. This value is used as the feedforward gain for the current time step. Numerical examples are presented to show the effectiveness of this adaptive control scheme. The effects of varying the control objectives, the updating time for the feedforward gain, and the number and location of actuators are studied. Some practical issues such as sampled-data design, output feedback, actuator dynamics and time delays are also considered.; In order to address the possibility of sensor failures, Fault Detection Neural Networks (FDNNs) and Fault Accommodation Neural Networks (FANNs) have been developed in previous work. In the present work, alternative architectures are used to improve the performance of the neural networks. In particular, more highly integrated neural networks are examined for the FANNs. Once the networks have been trained, their effectiveness in an integrated control scheme is tested during simulations of seismic events using excitation data from actual earthquakes. The results of numerical studies show that the use of these improved neural networks for sensor fault accommodation makes improvements in the structure's controlled response possible.
机译:本文针对结构工程应用研究了一种新的组合式反馈-前馈控制算法。控制器包含反馈和前馈组件。假定反馈分量与传统LQR设计中的反馈分量相同。前馈分量是通过在每个时间增量处将外部激励估计为一系列阶跃函数而获得的。该前馈增益随用于估计的阶跃函数的持续时间而变化,并随着持续时间的增加而收敛。因此,可以使用有限数量的预先计算的增益来表示潜在的前馈增益曲线。在任何时刻,都将测量激励,并通过使用过去的测量,可以从预先计算的增益集中选择所记录的激励值的最有效前馈增益。该值用作当前时间步的前馈增益。数值例子表明了该自适应控制方案的有效性。研究了改变控制目标,前馈增益更新时间以及执行器数量和位置的影响。还考虑了一些实际问题,例如采样数据设计,输出反馈,执行器动力学和时间延迟。为了解决传感器故障的可能性,在先前的工作中已经开发了故障检测神经网络(FDNN)和故障适应神经网络(FANN)。在当前的工作中,使用替代体系结构来提高神经网络的性能。特别是,对于FANN,检查了高度集成的神经网络。一旦对网络进行了训练,就可以使用来自实际地震的激励数据在地震事件模拟过程中测试其在集成控制方案中的有效性。数值研究的结果表明,将这些改进的神经网络用于传感器故障调节可以改善结构的受控响应。

著录项

  • 作者

    Ma, Tianwei.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Mechanical.; Engineering Civil.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号