首页> 外文学位 >Hot-wire chemical vapor deposition of silicon and silicon nitride for photovoltaics: Experiments, simulations, and applications.
【24h】

Hot-wire chemical vapor deposition of silicon and silicon nitride for photovoltaics: Experiments, simulations, and applications.

机译:光伏用硅和氮化硅的热线化学气相沉积:实验,模拟和应用。

获取原文
获取原文并翻译 | 示例

摘要

Hot-wire chemical vapor deposition is a promising technique for deposition of thin film silicon for photovoltaics. Fundamental questions remain, however, about the gas-phase and surface-kinetic processes involved. To this end, the nature of the decomposition process has been studied in detail by use of mass spectrometry. Catalysis was evident for SiH3 production with the use of a new wire, while aged wires appear to produce radicals by a non-catalyzed route. Large quantities of silicon were present at the surface, consistent with a silicide layer.; Threshold ionization mass spectrometry revealed large quantities of the SiH2 radical, attributed to heterogeneous pyrolysis on the walls of the reactor. At dilute (1% in He) silane pressures of up to 2 Torr, a negligible amount of ions and silicon agglomerates (Si2, Si2H, Si 2H6) were detected. Density functional theory calculations reveal an energetically favorable route for the reaction of Si and SiH 4, producing Si2H2 and H2. Two-dimensional Monte Carlo simulations were used to model a hot-wire reactor, showing that filament arrays can be used to improve film growth uniformity. Continuum simulations predict a maximum growth rate of 10 nm/s for dilute (1%) silane conditions and a rate of 50 nm/s for pure silane.; Hot-wire chemical vapor deposition was used to deposit silicon nitride films with indices of refraction from 1.8–2.5 and hydrogen content from 9–18 atomic %. By tuning the SiH4/NH3 flow ratio, films in which the hydrogen was predominantly bound to N or Si could be produced. Platinum-diffused silicon samples, capped by a hydrogenated silicon nitride layer revealed, upon annealing at 700°C, platinum-hydrogen complexes with a bulk concentration of 1014 cm−3. Photovoltaic cells employing a hot-wire nitride layer were found to have comparable electrical properties to those using plasma nitride layers.; Finally, a method for in situ generation of SiH 4 by atomic hydrogen etching was evaluated. Using a cooled crystalline silicon target in an H/H2 ambient produced negligible etching, while a cooled amorphous silicon film target was etched at a rate of up to 14 nm/min. In the latter case, net deposition at 0.6 nm/min onto a heated Ge(100) substrate resulted.
机译:热线化学气相沉积是一种用于光伏的薄膜硅沉积的有前途的技术。然而,关于所涉及的气相和表面动力学过程仍然存在根本性的问题。为此,已经通过使用质谱法详细研究了分解过程的性质。使用新的金属丝可明显催化SiH 3 的生产,而老化的金属丝似乎会通过非催化途径产生自由基。表面上存在大量硅,与硅化物层一致。阈值电离质谱分析显示大量SiH2自由基,归因于反应器壁上的异质热解。稀释时(氦气中的1%)的硅烷压力高达2托,离子和硅团聚体(Si 2 ,Si 2 H,Si 2 H 6 )。密度泛函理论计算揭示了Si和SiH 4 反应产生Si 2 H 2 和H 2的能量上有利的途径。二维蒙特卡洛模拟用于热线反应器建模,表明可以使用细丝阵列提高薄膜生长的均匀性。连续谱模拟预测,对于稀(1%)硅烷条件,最大生长速率为10 nm / s,对于纯硅烷,最大生长速率为50 nm / s。热线化学气相沉积用于沉积折射率为1.8-2.5和氢含量为9-18原子%的氮化硅膜。通过调节SiH 4 / NH 3 的流量比,可以制得氢主要与N或Si结合的薄膜。用氢化氮化硅层覆盖的铂扩散硅样品显示,在700°C退火后,铂-氢络合物的体积浓度为10 14 cm -3 。发现使用热线氮化物层的光伏电池具有与使用等离子体氮化物层的光伏电池相当的电性能。最后,评估了一种通过原子氢刻蚀原位生成SiH 4 的方法。在H / H 2 环境中使用冷却的晶体硅靶产生的蚀刻可忽略不计,而冷却的非晶硅膜靶以高达14 nm / min的速率蚀刻。在后一种情况下,导致以0.6 nm / min的速度在加热的Ge(100)衬底上净沉积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号