首页> 外文学位 >Tensor-Krylov methods for solving large-scale systems of nonlinear equations.
【24h】

Tensor-Krylov methods for solving large-scale systems of nonlinear equations.

机译:用于解决大型非线性方程组的Tensor-Krylov方法。

获取原文
获取原文并翻译 | 示例

摘要

This thesis develops and investigates iterative tensor methods for solving large-scale systems of nonlinear equations. Standard tensor methods for nonlinear equations have performed especially well on small, dense problems where the Jacobian matrix at the solution is singular or ill-conditioned, something that occurs on many classes of large-scale problems, such as identifying or approaching turning points. The success of tensor methods originates from a special, restricted form of the second-order term included in the local tensor model that provides information lacking in a (nearly) singular Jacobian. This research has three areas of emphasis. First, we study the performance of tensor methods on ill-conditioned problems. The results show that direct tensor methods and large-scale iterative tensor methods have clear computational advantages over Newton-based methods on ill-conditioned problems, similar to their performance on singular problems. Second, a new curvilinear linesearch globalization scheme is developed for tensor methods that smoothly combines the Newton and tensor directions. The results show that the curvilinear linesearch is more robust and efficient than previous linesearch implementations. Finally, this research extends direct tensor methods to large-scale problems by developing three tensor-Krylov methods that base each iteration upon a linear model augmented with a limited second-order term. The methods are implemented in an object-oriented nonlinear software package called NOX that is being developed at Sandia National Laboratories. The advantage of the new tensor-Krylov methods over existing large-scale tensor methods is their ability to solve the local tensor model to a specified accuracy, which produces a more accurate tensor step. The performance of these methods in comparison to Newton-GMRES and tensor-GMRES is explored on several problems, including three Navier-Stokes fluid flow problems. The numerical results provide evidence that tensor-Krylov methods are generally more robust and more efficient than Newton-GMRES on some important and difficult problems, including ill-conditioned problems. In addition, the results show that the new tensor-Krylov methods and tensor-GMRES each perform better in certain situations.
机译:本文开发并研究了迭代张量方法,用于求解大型非线性方程组。非线性方程式的标准张量方法在较小的稠密问题上表现尤其出色,在这些问题中,解中的雅可比矩阵是奇异的或病态的,这种情况在许多大范围的大问题中都会发生,例如识别或逼近转折点。张量方法的成功源于局部张量模型中包含的特殊,受限形式的二阶项,它提供了(几乎)奇异的Jacobian信息。这项研究有三个重点领域。首先,我们研究张量方法在病态问题上的性能。结果表明,在病态问题上,直接张量方法和大规模迭代张量方法具有比基于牛顿法的方法明显的计算优势,类似于其在奇异问题上的性能。其次,针对张量方法开发了一种新的曲线线搜索全球化方案,该方案平稳地结合了牛顿和张量方向。结果表明,曲线线搜索比以前的线搜索实现更健壮和有效。最后,这项研究通过开发三种张量-Krylov方法将直接张量方法扩展到大规模问题,这些方法基于每次迭代均以有限的二阶项为基础的线性模型进行扩展。这些方法是在桑迪亚国家实验室正在开发的名为NOX的面向对象的非线性软件包中实现的。与现有的大规模张量方法相比,新的张量-Krylov方法的优势在于它们能够将局部张量模型求解到指定的精度,从而产生更精确的张量阶跃。与牛顿-GMRES和张量-GMRES相比,这些方法的性能在几个问题上进行了探索,其中包括三个Navier-Stokes流体流动问题。数值结果提供了证据,证明在某些重要和困难的问题(包括病态问题)上,张量Krylov方法通常比Newton-GMRES更健壮和更有效。此外,结果表明,新的张量-Krylov方法和张量-GMRES在某些情况下均具有更好的性能。

著录项

  • 作者

    Bader, Brett W.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号