首页> 外文学位 >Achieving spatiotemporal control over molecular interactions with biological material-based approaches.
【24h】

Achieving spatiotemporal control over molecular interactions with biological material-based approaches.

机译:使用基于生物材料的方法实现对分子相互作用的时空控制。

获取原文
获取原文并翻译 | 示例

摘要

Spatiotemporal control of biomolecules and molecular interactions is an important aspect of the application of nanotechnology to the biological realm. Nature has demonstrated the ability to create highly efficient reactions at small scales through approaches that use multidimensional-based constraints. Solution based and membrane based reactions are three- and two-dimensional in nature, respectively. Cells also have the ability to use one-dimensional constrained reactions through nucleic acid and cytoskeletal reactions. By using this small scale inspiration through the cytoskeleton in vitro, we propose a novel method for accelerating the rate of biochemical reactions by controlling the spatiotemporal reactions using synthetic templating. As a model system, we use tetrameric beta-galactosidase, split into a pair of non-reactive dimers, and cause them to have a strong affinity for microtubules. The microtubule templating of the beta-galactosidase increases the concentration of the dimers to a level at which they will frequently reform into an active tetramer. The reactive activity of the beta-galactosidase is monitored using X-Gal, a substrate that forms a blue dye upon cleavage by the enzyme, enabling us to demonstrate a nearly 100-fold increase in the initial rate of reaction.;The same cytoskeletal system that provides the basis for our templating approach is used by the cell for transportation of macromolecules and organelles as well. The kinesin/microtubule interaction has been investigated for some time as a biologically based system for nano-scale transport, primarily using the microtubules as shuttles to move over a field of surface-adsorbed kinesin. We describe here a method of spatiotemporal manipulation of this interaction in order to control gliding microtubule motility dynamically, using the thermoresponsive polymer poly(N-isopropylacrylamide) and a PDMS microchannel liquid heating system. With this system, we can shuttle our reaction scaffolds to specific sites in order to localize the reaction even further.
机译:时空控制生物分子和分子相互作用是将纳米技术应用于生物领域的重要方面。大自然证明了通过使用基于多维约束的方法在小规模上创建高效反应的能力。基于溶液的反应和基于膜的反应本质上分别是三维和二维的。细胞还具有通过核酸和细胞骨架反应使用一维受限反应的能力。通过使用体外细胞骨架的这种小规模灵感,我们提出了一种通过使用合成模板控制时空反应来加快生化反应速率的新方法。作为模型系统,我们使用四聚体β-半乳糖苷酶,分裂成一对非反应性二聚体,并使它们对微管具有很强的亲和力。 β-半乳糖苷酶的微管模板使二聚体的浓度增加至它们经常重组成活性四聚体的水平。 β-半乳糖苷酶的反应活性是使用X-Gal监测的,X-Gal是一种被酶切割后会形成蓝色染料的底物,使我们能够证明初始反应速率提高了近100倍。相同的细胞骨架系统这为我们的模板方法提供了基础,该方法也被细胞用于大分子和细胞器的运输。作为一种基于生物学的纳米级运输系统,已经研究了驱动蛋白/微管的相互作用已有一段时间了,主要是使用微管作为穿梭在表面吸附的驱动蛋白领域上移动。我们在这里描述一种时空操纵这种相互作用的方法,以便使用热响应性聚合物聚(N-异丙基丙烯酰胺)和PDMS微通道液体加热系统动态地控制滑动微管的运动。有了这个系统,我们可以将我们的反应支架穿梭到特定位置,以便进一步定位反应。

著录项

  • 作者

    Didier, Jonathan E.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号