首页> 外文学位 >Elemental and isotope geochemistry of Appalachian fluids: Constraints on basin-scale brine migration, water-rock reactions, microbial processes, and natural gas generation.
【24h】

Elemental and isotope geochemistry of Appalachian fluids: Constraints on basin-scale brine migration, water-rock reactions, microbial processes, and natural gas generation.

机译:阿巴拉契亚流体的元素和同位素地球化学:限制盆地规模的盐水迁移,水岩反应,微生物过程和天然气的产生。

获取原文
获取原文并翻译 | 示例

摘要

This study utilizes new geochemical analyses of fluids (formation water and gas) collected predominately from Devonian organic-rich shales and reservoir sandstones from the northern Appalachian Basin margin to investigate basin scale hydrologic processes, water-rock reactions, microbial activity, and natural gas generation. Elemental and isotopic composition of co-produced formation waters and natural gas show that the majority of methane in Devonian organic-rich shales and reservoir sandstones is thermogenic in origin with localized accumulations of microbial gas. Microbial methanogenesis appears to be primarily limited by redox buffered conditions favoring microbial sulfate reduction. Thermal maturity (bioavailability) of shale organic matter and the paucity of formation waters may also explain the lack of extensive microbial methane accumulations.;Iodine and strontium isotopes, coupled to elemental chemistry demonstrate basin scale fluid flow and clay mineral diagenesis. Evidence for this is based on anomalously high 129I/I values sourced from uranium deposits (fissiogenic production of 129I) at the structural front of the Appalachian Basin. Radiogenic 87Sr/86Sr (up to 0.7220), and depleted boron and potassium concentrations support smectite clay diagenesis at temperatures greater than 120°C. The development of fissiogenic 129I as a tracer of basin scale fluid flow is a novel application of iodine isotopes provided that the sources of cosmogenic and anthropogenic 129I are reasonably well constrained.;The anomalously high 129I/I in Appalachian Basin brines may be alternatively explained by microbial fractionation based on a correlation with decreasing delta13C-DIC values and decreasing sulfate concentrations in the range of sulfate reduction. These results demonstrate that the microbial fractionation of iodine isotopes may be possible and an important consideration when interpreting 129I/I, regardless of the source of 129I.;Results from this study have important implications for understanding the controls on and origins of natural gas production in sedimentary basins; tectonically and topographically driven basin scale fluid flow, including diagenetically induced water-rock reactions and mineral ore deposition related to orogenesis; and an improvement of the use of iodine isotopes for understanding large scale fluid flow, and possibly its use as a tracer of organic matter diagenesis and the distribution of radionuclides in the environment.
机译:这项研究利用了新的地球化学分析方法,主要是从阿巴拉契亚盆地北部边缘的泥盆纪富含有机质的页岩和储层砂岩中收集的流体(地层水和天然气)来研究盆地规模的水文过程,水岩反应,微生物活动和天然气生成。共同生产的地层水和天然气的元素和同位素组成表明,泥盆纪富含有机质的页岩和储层砂岩中的大部分甲烷是热成因的,其中微生物气体局部富集。微生物产甲烷作用似乎主要受到氧化还原缓冲条件的限制,这些条件有利于微生物硫酸盐的还原。页岩有机质的热成熟度(生物利用度)和地层水的稀缺也可能解释了微生物甲烷甲烷缺乏广泛积累的情况。碘和锶同位素,再加上元素化学,证明盆地规模的流体流动和粘土矿物成岩作用。对此的证据是基于来自阿巴拉契亚盆地构造前缘的铀矿床(129I的成岩生产)异常高的129I / I值。辐射成因的87Sr / 86Sr(最高0.7220)以及贫化的硼和钾浓度可在高于120°C的温度下支持蒙皂石粘土的成岩作用。裂变129I作为盆地规模流体示踪剂的发展是碘同位素的一种新型应用,前提是对成因和人为129I的来源进行了合理的限制。可以用以下方法来替代地解释阿巴拉契亚盆地盐水中异常高的129I / I:在降低硫酸盐还原范围内,基于与delta13C-DIC值降低和硫酸盐浓度降低相关的微生物分馏。这些结果表明,不论129I的来源如何,碘同位素的微生物分离都是可能的,并且是一个重要的考虑因素;无论129I的来源如何;本研究的结果对于理解伊朗天然气生产的控制方法和来源都具有重要意义。沉积盆地构造和地形驱动的盆地尺度的流体流动,包括由渗磁作用引起的水岩反应和与造山运动有关的矿物矿石沉积;改进了碘同位素的使用,以了解大规模流体流动,并有可能将其用作有机物成岩和环境中放射性核素分布的示踪剂。

著录项

  • 作者

    Osborn, Stephen Gerard.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Geology.;Hydrology.;Geochemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号