首页> 外文学位 >Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system.
【24h】

Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system.

机译:基于激光惯性聚变的能量:混合聚变裂变核能系统的中子学设计方面。

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants.;The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design.;The LFFH engine thermal power is controlled using a technique of adjusting the 6Li/7Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant 6Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine.;Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive Mesh Refinement (AMR) adjusts the depletion zone size according to the variation in flux across the zone or fractional contribution to total absorption or fission.;A parametric analysis on a fully mixed fuel core was performed using the LNC and ABL code suites. The resulting system parameters are found to optimize performance metrics using a 20 MT DU fuel load with a 20% TRISO packing and a 300 im kernel diameter operated with a fusion input power of 500 MW and a fission blanket gain of 4.0.;LFFH potentially offers a proliferation resistant technology relative to other nuclear energy systems primarily because of no need for fuel enrichment or reprocessing. A figure of merit of the material attractiveness is examined and it is found that the fuel is effectively contaminated to an unattractive level shortly after the system is started due to fission product and minor actinide build up.
机译:这项研究调查了称为激光聚变裂变混合动力(LFFH)的混合聚变裂变能量系统的中子学设计方面。 LFFH将当前的激光惯性约束聚变技术与先进的裂变反应堆技术相结合,以产生一种消除了纯聚变或纯裂变系统的许多负面影响的系统。在检查LFFH能源任务时,LFFH工厂可以提供美国和世界能源的很大一部分。所描述的LFFH发动机利用一个中央聚变室,该聚变室被多层倍增和缓和介质包围。这些层或覆盖层包括冷却剂增压室,铍(Be)倍增层,可熔裂变覆盖层和石墨卵石反射器。每层都由穿孔的氧化物弥散强化(ODS)铁素体钢壁隔开。中央聚变室被ODS铁素体钢第一壁包围。第一壁涂有250-500毫米的钨,以减轻X射线损坏。第一壁由Li17Pb83共晶冷却,由于其中子倍增和良好的传热性能而被选择。 Li17Pb 83在第一壁周围的外套中流到抽气室。主冷却液注入室位于Li17Pb83的正后方,通过坚固的ODS壁与Li17Pb83隔开。这种主要的系统冷却剂是熔融盐熔渣(2LiF-BeF2),其选择具有有益的中子学和传热性能。裂片的使用既使聚变燃料的生产(and)又使裂变层的中子减速和倍增成为可能。 Be卵石(直径1厘米)倍增层围绕着冷却剂注入腔,冷却剂沿径向流过整个床的多孔壁。在Be层的外部,裂变燃料层由贫铀组成,该贫铀包含在2 cm直径的燃料小卵石中的填充率为20%的三向同性(TRISO)燃料颗粒中。裂变层被相同的径向跳线流冷却,该径向跳线流穿过有孔的ODS壁到达反射层。该反射器毯是75厘米厚,由直径为2厘米的石墨小卵石组成,这些小卵石通过吊环冷却。叶状抽气室围绕反射器床。进行了详细的中子学设计研究,以得出所描述的设计。LFFH发动机的热功率是通过使用一种调节主冷却剂和辅助冷却剂中6Li / 7Li富集度的技术来控制的。浓缩通过增加increasing的产生并减少裂变来调整设计中的系统热功率。为了进行LFFH发动机的仿真和设计,在C ++中开发了一个名为LFFH核控制(LNC)的新软件程序,以扩展现有中子传输和耗尽软件程序的功能。用MCNP5进行中子输运计算。使用Monteburns 2.0执行耗竭计算,该软件利用ORIGEN 2.0和MCNP5进行燃耗计算。 LNC支持许多设计参数,并且能够执行从初始启动到完全烧毁的完整3D系统仿真。它能够迭代搜索满足用户定义的性能标准的冷却液6Li富集度和所得材料成分。在整个研究过程中,LNC用于LFFH发动机的时间依赖性仿真。;开发了两种其他方法来提高LNC计算的计算效率。这些称为自适应时间步长和自适应网格细化的方法被合并到一个单独的独立C ++库中,称为Adaptive Burnup Library(ABL)。 ABL允许其他客户端代码调用和利用其功能。自适应时间步长可用于自动最大化耗尽时间步长的大小,同时保持所需的精度。自适应网格划分允许对固定燃料配置进行分析,这通常需要计算量大的耗尽区。另外,自适应网格细化(AMR)可以根据区域通量的变化或对总吸收或裂变的贡献来调整耗尽区的大小。;使用LNC和ABL代码套件对完全混合的燃料芯进行了参数分析。发现使用20 MT DU燃料负载,20%TRISO填料和300 im核直径,以500 MW的聚变输入功率和4.0的裂变覆盖增益运行时,所得的系统参数可优化性能指标。一种相对于其他核能系统的抗扩散技术,主要是因为不需要燃料浓缩或后处理。检查了材料吸引力的品质因数,发现在系统启动后不久,由于裂变产物和少量的act系元素积聚,燃料被有效地污染到无吸引力的水平。

著录项

  • 作者

    Kramer, Kevin James.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号