首页> 外文学位 >Single-column modeling of Arctic stratiform clouds: Development and evaluation of bulk microphysics parameterizations.
【24h】

Single-column modeling of Arctic stratiform clouds: Development and evaluation of bulk microphysics parameterizations.

机译:北极层状云的单列建模:大量微观物理参数化的开发和评估。

获取原文
获取原文并翻译 | 示例

摘要

Previous studies have indicated that climate models utilizing bulk microphysics parameterizations often poorly simulate Arctic stratiform clouds. To characterize these deficiencies and improve climate simulations, a single-moment microphysics scheme is carefully evaluated against observations and a new double-moment scheme is developed. These parameterizations are tested using the single-column modeling strategy. Observed and retrieved cloud properties were obtained during the 1997–1998 Surface Heat Budget of the Arctic Ocean experiment (SHEBA) and the First ISCCP Regional Clouds Experiment - Arctic Clouds Experiment (FIRE-ACE).; In single-column models, advective and dynamic forcing must be specified. A new method is described that constrains temperature and water vapor advection profiles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to observed heat and moisture budgets. By constraining the advective forcing, uncertainty in evaluating the microphysics parameterizations is reduced. This constrained advection data set is used to force the single-column model simulations detailed in the paper.; A single-moment microphysics parameterization currently utilized by several climate models is found to be inadequate for modeling Arctic clouds mostly due to deficiencies in simulating the cloud phase and LWP (which are crucial for correctly predicting the surface radiative fluxes). These biases are attributed to deficiencies in simulating the glaciation of supercooled liquid water and uncertainties in the ice crystal number concentration. A new double-moment microphysics scheme is developed to address these shortcomings. The new scheme incorporates several physically-based parameterizations that allow for an explicit treatment of interactions between the cloud microphysics, aerosol, and thermodynamics. It simulates reasonably well three cloud systems observed during SHEBA/FIRE-ACE and substantially improves the simulation of a mixed-phase stratus relative to the simpler single-moment scheme. The new scheme may be used in mesoscale or cloud resolving models; a simpler version of the scheme may be developed for global climate models.
机译:先前的研究表明,利用整体微物理学参数化的气候模型通常无法很好地模拟北极地层云。为了表征这些缺陷并改善气候模拟,我们仔细地根据观测结果对单矩微物理学方案进行了评估,并开发了新的双矩方案。这些参数化使用单列建模策略进行测试。在1997-1998年的北冰洋表面热收支实验(SHEBA)和第一个ISCCP区域云实验-北极云实验(FIRE-ACE)期间,获得了观测到的云特性。在单列模型中,必须指定对流和动态强迫。描述了一种新方法,该方法将从欧洲中期天气预报中心(ECMWF)获得的温度和水汽平流剖面限制为观测到的热量和水分预算。通过限制对流强迫,可以降低评估微物理参数化过程中的不确定性。该约束对流数据集用于强制进行本文中详细介绍的单列模型模拟。目前发现,几种气候模式目前仅采用单矩微物理参数化方法不足以对北极云进行建模,这主要是由于模拟云相和LWP(这对于正确预测表面辐射通量至关重要)的缺陷。这些偏差归因于模拟过冷液态水的冰川作用方面的缺陷以及冰晶数浓度的不确定性。针对这些缺点,人们开发了一种新的双矩微物理学方案。新方案结合了几种基于物理的参数设置,可以对云微观物理学,气溶胶和热力学之间的相互作用进行显式处理。它可以很好地模拟在SHEBA / FIRE-ACE期间观察到的三个云系统,并且相对于更简单的单矩方案,它大大改善了混合相层的模拟。新方案可用于中尺度或云解析模型;可以针对全球气候模型开发该方案的更简单版本。

著录项

  • 作者

    Morrison, Hugh C.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics Atmospheric Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 241 p.
  • 总页数 241
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 大气科学(气象学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号