首页> 外文学位 >Decoding limb movement from posterior parietal cortex in a realistic task.
【24h】

Decoding limb movement from posterior parietal cortex in a realistic task.

机译:在实际任务中,从后顶叶皮层解码肢体运动。

获取原文
获取原文并翻译 | 示例

摘要

Neural activity in posterior parietal cortex (PPC) can be harnessed to estimate not only the endpoint of a reach (Musallam, Corneil et al. 2004) but also to control the continuous trajectory of an end-effector (Mulliken, Musallam et al. 2008). Here we expand on this work by showing that trajectory information can be extracted robustly from PPC neurons in more realistic, less constrained tasks. Although it is thought that the visuo-motor areas in PPC rely on gaze-centered reference frames to encode movement-related parameters, for the first time we were able to show that hand movement can be decoded accurately without constraining gaze. Furthermore, to evaluate the potential of PPC signals for controlling prosthetic limbs under realistic conditions we increased the complexity of the task by studying point-to-point reaches in a 3D workspace instead of relying on the classic lower-dimensional 2D center-out task.;Specifically, we trained two monkeys to perform arm movements to guide a 3D cursor on a computer display to targets presented at random locations. We found that we could accurately reconstruct the trajectory of the cursor using a relatively small ensemble of simultaneously recorded PPC neurons. We also tested whether we could decode trajectories during closed-loop brain control sessions, in which the real-time position of the cursor was determined solely by the monkeys' neural activity in PPC. The monkeys learned to perform brain control trajectories at up to 100% success rate after just a few sessions. This improvement in behavioral performance was accompanied by an increase in off-line decoding performance of the PPC ensemble. In addition to these spatial learning effects we observed learning in the temporal domain. In a task where the animal's cursor was intentionally perturbed by superimposed artificial dynamics of a realistic prosthetic limb model, we found gradual adaptation of single-neuron activity, suggesting that PPC neurons are able to update their representation of limb movement when its dynamics change. Both spatial and temporal learning will be crucial for achieving satisfactory results when the central nervous system is forced to adapt to an assistdevice with initially unknown kinematic and dynamic characteristics.;Based on our findings we conclude that PPC is a strong candidate brain region for the extraction of signals to control neural prosthetic limbs. The decoding accuracies found are similar to results reported from the more commonly targeted motor areas, but unlike the motor areas PPC provides access to additional variables such as gaze and intended reach-targets.
机译:可以利用后顶叶皮质(PPC)中的神经活动来估计伸手可及的距离终点(Musallam,Corneil等2004),还可以控制末端执行器的连续轨迹(Mulliken,Musallam等2008) )。在这里,我们通过显示可以从PPC神经元中更实际,更不受约束的任务中可靠地提取轨迹信息来扩展这项工作。尽管人们认为PPC中的视觉运动区域依赖于以凝视为中心的参考帧来编码与运动有关的参数,但是我们第一次能够证明在不限制凝视的情况下可以准确地解码手部运动。此外,为了评估在实际条件下控制PPC信号的潜力,我们通过研究3D工作空间中的点对点范围而不是依靠经典的低维2D中心对齐任务来增加任务的复杂性。 ;具体地说,我们训练了两只猴子来执行手臂运动,以将计算机显示器上的3D光标引导到随机位置出现的目标。我们发现,我们可以使用相对较小的同时记录的PPC神经元集合来准确地重建光标的轨迹。我们还测试了在闭环大脑控制会话期间是否可以解码轨迹,其中光标的实时位置完全取决于猴子在PPC中的神经活动。在短短的几次训练后,猴子就学会了以高达100%的成功率执行大脑控制轨迹。行为性能的提高伴随着PPC集成的离线解码性能的提高。除了这些空间学习效果,我们还观察到了时域学习。在一项任务中,逼真的假肢模型的叠加人工动力学故意干扰了动物的光标,我们发现了单个神经元活动的逐渐适应,表明PPC神经元能够在其动力学变化时更新其肢体运动的表示。当中枢神经系统被迫适应具有最初未知的运动学和动态特征的辅助设备时,时空学习对于取得令人满意的结果都是至关重要的。基于我们的发现,我们得出结论,PPC是提取的强力候选大脑区域控制神经假肢的信号。发现的解码精度与从更常见的目标运动区域报告的结果相似,但是与运动区域不同的是,PPC提供了访问其他变量(例如注视和预期的到达目标)的权限。

著录项

  • 作者

    Hauschild, Markus.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Biology Neurobiology.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号