首页> 外文学位 >Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines.
【24h】

Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines.

机译:稀薄预混合涡流稳定型燃气轮机发动机燃烧动力学的建模和仿真。

获取原文
获取原文并翻译 | 示例

摘要

This research focuses on the modeling and simulation of combustion dynamics in lean-premixed gas-turbines engines. The primary objectives are: (1) to establish an efficient and accurate numerical framework for the treatment of unsteady flame dynamics; and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations in a lean-premixed gas-turbine combustor.; The energy transfer mechanisms among mean flow motions, periodic motions and background turbulent motions in turbulent reacting flow are first explored using a triple decomposition technique. Then a comprehensive numerical study of the combustion dynamics in a lean-premixed swirl-stabilized combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties. Turbulence closure is achieved using a large-eddy-simulation (LES) technique. The compressible-flow version of the Smagorinsky model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. A level-set flamelet library approach is used to simulate premixed turbulent combustion. In this approach, the mean flame location is modeled using a level-set G-equation, where G is defined as a distance function. Thermophysical properties are obtained using a presumed probability density function (PDF) along with a laminar flamelet library. The governing equations and the associated boundary conditions are solved by means of a four-step Runge-Kutta scheme along with the implementation of the message passing interface (MPI) parallel computing architecture. The analysis allows for a detailed investigation into the interaction between turbulent flow motions and oscillatory combustion of a swirl-stabilized injector. Results show good agreement with an analytical solution and experimental data in terms of acoustic properties and flame evolution. A study of flame bifurcation from a stable state to an unstable state indicates that the inlet flow temperature and equivalence ratio are the two most important variables determining the stability characteristics of the combustor. Under unstable operating conditions, several physical processes responsible for driving combustion instabilities in the chamber have been identified and quantified. These processes include vortex shedding and acoustic interaction, coupling between the flame evolution and local flow oscillations, vortex and flame interaction and coupling between heat release and acoustic motions. The effects of inlet swirl number on the flow development and flame dynamics in the chamber are also carefully studied. In the last part of this thesis, an analytical model is developed using triple decomposition techniques to model the combustion response of turbulent premixed flames to acoustic oscillations.
机译:这项研究的重点是稀薄预混燃气轮机发动机燃烧动力学的建模和仿真。主要目标是:(1)建立一个有效,准确的数值框架来处理不稳定的火焰动力学; (2)研究引起稀薄预混燃气轮机燃烧室中流动振荡的参数和机理。首先利用三重分解技术探索了湍流反应流中平均流运动,周期性运动和背景湍流运动之间的能量传递机理。然后,对稀薄预混合涡流稳定燃烧室的燃烧动力学进行了全面的数值研究。该分析从三个方面处理了守恒方程,并考虑了有限速率的化学反应和可变的热物理性质。使用大涡模拟(LES)技术可实现湍流闭合。 Smagorinsky模型的可压缩流版本用于描述亚网格规模的湍流运动及其对大型结构的影响。水平集小火焰库方法用于模拟预混湍流燃烧。在这种方法中,使用水平集G方程对平均火焰位置进行建模,其中G被定义为距离函数。使用假定的概率密度函数(PDF)以及层状小火焰库获得热物理性质。通过四步Runge-Kutta方案以及消息传递接口(MPI)并行计算体系结构的实现,求解了控制方程和相关的边界条件。该分析允许对紊流运动与涡流稳定喷射器的振荡燃烧之间的相互作用进行详细研究。结果表明,在声学特性和火焰演化方面,与解析解决方案和实验数据吻合良好。对从稳定状态到不稳定状态的火焰分叉的研究表明,进气温度和当量比是确定燃烧室稳定性的两个最重要的变量。在不稳定的工作条件下,已经确定并量化了导致燃烧室内燃烧不稳定性的几种物理过程。这些过程包括涡旋脱落和声相互作用,火焰演化和局部流动振荡之间的耦合,涡旋和火焰相互作用以及放热和声运动之间的耦合。还仔细研究了入口涡流数对室内流动发展和火焰动力学的影响。在本文的最后一部分,使用三重分解技术建立了一个解析模型,以模拟湍流预混火焰对声振荡的燃烧响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号