首页> 外文学位 >First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte Design.
【24h】

First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte Design.

机译:镧系金属氧化物用于最佳燃料电池电解质设计的第一原理和遗传算法研究。

获取原文
获取原文并翻译 | 示例

摘要

As the demand for clean and renewable energy sources continues to grow, much attention has been given to solid oxide fuel cells (SOFCs) due to their efficiency and low operating temperature. However, the components of SOFCs must still be improved before commercialization can be reached. Of particular interest is the solid electrolyte, which conducts oxygen ions from the cathode to the anode. Samarium-doped ceria (SDC) is the electrolyte of choice in most SOFCs today, due mostly to its high ionic conductivity at low temperatures. However, the underlying principles that contribute to high ionic conductivity in doped ceria remain unknown, and so it is difficult to improve upon the design of SOFCs. This thesis focuses on identifying the atomistic interactions in SDC which contribute to its favourable performance in the fuel cell.;Unfortunately, information as basic as the structure of SDC has not yet been found due to the difficulty in experimentally characterizing and computationally modelling the system. For instance, to evaluate 10.3% SDC, which is close to the 11.1% concentration used in fuel cells, one must investigate 194 trillion configurations, due to the numerous ways of arranging the Sm ions and oxygen vacancies in the simulation cell. As an exhaustive search method is clearly unfeasible, we develop a genetic algorithm (GA) to search the vast potential energy surface for the low-energy configurations, which will be most prevalent in the real material.;With the GA, we investigate the structure of SDC for the first time at the DFT+U level of theory. Importantly, we find key differences in our results from prior calculations of this system which used less accurate methods, which demonstrate the importance of accurately modelling the system. Overall, our simulation results of the structure of SDC agree with experimental measurements. We identify the structural significance of defects in the doped ceria lattice which contribute to oxygen ion conductivity. Thus, the structure of SDC found in this work provides a basis for developing better solid electrolytes, which is of significant scientific and technological interest.;Following the structure search, we perform an investigation of the electronic properties of SDC, to understand more about the material. Notably, we compare our calculated density of states plot to XPS measurements of pure and reduced SDC. This allows us to parameterize the Hubbard (U) term for Sm, which had not yet been done. Importantly, the DFT+U treatment of the Sm ions also allowed us to observe in our simulations the magnetization of SDC, which was found by experiment.;Finally, we also study the SDC surface, with an emphasis on its structural similarities to the bulk. Knowledge of the surface structure is important to be able to understand how fuel oxidation occurs in the fuel cell, as many reaction mechanisms occur on the surface of this porous material. The groundwork for such mechanistic studies is provided in this thesis.
机译:随着对清洁和可再生能源的需求不断增长,由于固体氧化物燃料电池(SOFC)的效率高和工作温度低,因此已经引起了很多关注。但是,在实现商业化之前,仍必须改进SOFC的成分。特别令人感兴趣的是固体电解质,其将氧离子从阴极传导到阳极。 today掺杂的二氧化铈(SDC)是当今大多数SOFC中选择的电解质,这主要是由于其在低温下具有高离子电导率。然而,导致掺杂二氧化铈中高离子电导率的基本原理仍然未知,因此很难对SOFC的设计进行改进。本论文着重于确定SDC中的原子相互作用,从而有助于其在燃料电池中的良好性能。不幸的是,由于难以对系统进行实验表征和计算建模,因此尚未找到作为SDC结构基本信息。例如,要评估10.3%的SDC(接近燃料电池中使用的11.1%的浓度),由于要在模拟电池中安排Sm离子和氧空位的方法很多,因此必须研究194万亿个配置。由于穷举搜索方法显然不可行,因此我们开发了一种遗传算法(GA)来搜索低能量配置中的巨大势能面,该低能量配置在实际材料中最为普遍。在DFT + U的理论水平上首次获得SDC的认可。重要的是,我们发现该系统的先前计算结果存在关键差异,该计算使用了不太准确的方法,这表明了对系统进行精确建模的重要性。总体而言,我们对SDC结构的仿真结果与实验测量结果吻合。我们确定掺杂的二氧化铈晶格中的缺陷的结构重要性,这些缺陷有助于氧离子传导性。因此,这项工作中发现的SDC的结构为开发更好的固体电解质提供了基础,这具有重大的科学和技术意义。在结构搜索之后,我们对SDC的电子性质进行了研究,以了解更多有关SDC的信息。材料。值得注意的是,我们将计算出的状态密度图与纯SDC和还原SDC的XPS测量值进行了比较。这使我们可以将尚未完成的Sm的Hubbard(U)项参数化。重要的是,对Sm离子进行DFT + U处理还使我们能够在模拟中观察到SDC的磁化强度,这是通过实验发现的。最后,我们还研究了SDC表面,并着重于其与本体的结构相似性。 。由于能够在多孔材料的表面上发生许多反应机理,因此了解表面结构对于理解燃料在燃料电池中如何发生氧化非常重要。本文为此类机理研究提供了基础。

著录项

  • 作者

    Ismail, Arif.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Inorganic chemistry.;Physical chemistry.;Materials science.
  • 学位 M.Sc.
  • 年度 2011
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号