首页> 外文学位 >Microstructural Evolution in Friction Stir Welded High Strength Low Alloy Steels.
【24h】

Microstructural Evolution in Friction Stir Welded High Strength Low Alloy Steels.

机译:搅拌摩擦焊接高强度低合金钢的微观组织演变。

获取原文
获取原文并翻译 | 示例

摘要

Understanding microstructural evolution in Friction Stir Welding (FSW) of steels is essential in order to understand and optimize the process. Ferritic steels undergo an allotropic phase transformation. This makes microstructural evolution study very challenging. An approach based on Electron Backscattered Diffraction (EBSD) and phase transformation orientation relationships is introduced to reconstruct pre-transformed grain structure and texture. Reconstructed pre-transformed and post-transformed grain structures and textures were investigated in order to understand microstructural evolution. Texture results show that there is evidence of shear deformation as well as recrystallization in the reconstructed prior austenite. Room temperature ferrite exhibits well-defined shear deformation texture components. Shear deformation texture in the room temperature microstructure implies that FSW imposes deformation during and after the phase transformation. Prior austenite grain boundary analysis shows that variant selection is governed by interfacial energy. Variants that have near ideal BCC/FCC misorientation relative to their neighboring austenite and near zero misorientation relative to neighboring ferrite are selected. Selection of coinciding variants in transformed prior austenite Sigma-3 boundaries supports the interfacial-energy-controlled variant selection mechanism.
机译:为了理解和优化工艺,了解钢的摩擦搅拌焊接(FSW)中的微观结构演变至关重要。铁素体钢经历同素异形相变。这使得微结构演化研究非常具有挑战性。提出了一种基于电子背散射衍射(EBSD)和相变取向关系的方法来重构预转变的晶粒结构和织构。为了了解微观结构的演变,研究了重构前和后转变后的晶粒结构和织构。织构结果表明,在重建的奥氏体中有剪切变形和再结晶的迹象。室温铁氧体表现出明确的剪切变形织构成分。室温微结构中的剪切变形织构表明,FSW在相变期间和之后施加了变形。先前的奥氏体晶界分析表明,变体的选择受界面能的支配。选择相对于其相邻奥氏体具有接近理想的BCC / FCC取向和相对于邻近铁素体具有接近零的取向的变体。在转变后的奥氏体Sigma-3边界中重合的变体的选择支持界面能量控制的变体选择机制。

著录项

  • 作者

    Abbasi, Majid.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Engineering Mechanical.;Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 82 p.
  • 总页数 82
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号