首页> 外文学位 >Optimized Thermoelectric Module-Heat Sink Assemblies for Precision Temperature Control.
【24h】

Optimized Thermoelectric Module-Heat Sink Assemblies for Precision Temperature Control.

机译:优化的热电模块-散热器组件,用于精确的温度控制。

获取原文
获取原文并翻译 | 示例

摘要

Robust precision temperature control of heat-dissipating photonics components is achieved by mounting them on thermoelectric modules (TEMs) which are in turn mounted on heat sinks. However, the power consumption of such TEMs is high. Indeed, it may exceed that of the component. This problem is exacerbated when the ambient temperature surrounding a TEM and/or component heat load that it accommodates vary. In the usual packaging configuration a TEM is mounted on an air-cooled heat sink of specified thermal resistance. However, heat sinks of negligible thermal resistance minimize TEM power for sufficiently high ambient temperatures and/or heat loads. Conversely, a relatively high thermal resistance heat sink minimizes TEM power for sufficiently low ambient temperature and heat load. In the problem considered, total footprint of thermoelectric material in a TEM, thermoelectric material properties, component operating temperature, relevant component-side thermal resistances and ambient temperature range are prescribed. Moreover, the minimum and maximum rates of heat dissipation by the component are zero and a prescribed value, respectively. Provided is an algorithm to compute the combination of the height of the pellets in a TEM and the thermal resistance of the heat sink attached to it which minimizes the maximum sum of the component and TEM powers for permissible operating conditions. It is further shown that the maximum value of this sum asymptotically decreases as the total footprint of thermoelectric material in a TEM increases. Implementation of the algorithm maximizes the fraction of the power budget in an optoelectronics circuit pack available for other uses. Use of the algorithm is demonstrated through an example for a typical set of conditions.
机译:通过将光子组件安装在热电模块(TEM)上,可以实现对光子组件进行鲁棒的精确温度控制。但是,这种TEM的功耗很高。实际上,它可能超出了组件的范围。当TEM周围的环境温度和/或它所容纳的组件热负荷变化时,该问题会更加严重。在通常的包装配置中,将TEM安装在具有指定热阻的风冷散热器上。但是,对于足够高的环境温度和/或热负荷,可忽略不计的热阻的散热器将TEM功率降至最低。相反,相对较高的热阻散热器可将TEM功率降至最低,以实现足够低的环境温度和热负荷。在所考虑的问题中,规定了TEM中热电材料的总占地面积,热电材料特性,部件工作温度,相关的部件侧热阻和环境温度范围。此外,组件的最小散热率和最大散热率分别为零和规定值。提供了一种算法,可计算TEM中丸粒的高度和与其相连的散热器的热阻的组合,从而在允许的工作条件下将组件和TEM功率的最大和最小化。进一步表明,随着TEM中热电材料总足迹的增加,该和的最大值渐近减小。该算法的实现使光电子电路板中可用于其他用途的功率预算的比例最大化。通过一个典型条件集示例演示了算法的使用。

著录项

  • 作者

    Zhang, Rui.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2011
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号