首页> 外文学位 >Effect of meso to micro transition in morphology dependent fracture of silicon carbide ceramics.
【24h】

Effect of meso to micro transition in morphology dependent fracture of silicon carbide ceramics.

机译:中观到微观转变对碳化硅陶瓷形貌相关断裂的影响。

获取原文
获取原文并翻译 | 示例

摘要

The fracture behavior of brittle material such as Silicon Carbide (SiC) is affected by multiple factors during the fracture process. However, the increase use of SiC ceramics in numerous fields of industries is because of its superb thermal resistance, therefore, crack propagation analyses is of great importance. SiC usually is found in a polycrystalline form with grain boundary thickness ranging from a few nanometers to a few hundred nanometers and grains with multiple orientations with size of the order of few micrometers. This study focuses on analyzing how the interplay between different orientations of SiC and grain boundary thicknesses can be exploited for targeted improvement in the fracture resistance properties of SiC. Owing to the multiple length scales involved, a multiscale modeling strategy is employed. Images of experimentally processed nanoscale SiC morphologies were used to simulate crack propagation using the cohesive finite element method (CFEM). Dependence on specimen scale was considered by simulating microstructures of 2 different length scale windows: 300mum x 60mum (scale 1) and 75mum x 15mum (scale 2). In this study, the microstructural window at scale 1 did not explicitly consider the presence of grain boundaries. Due to stronger focus at scale 2, grain boundaries were explicitly modeled in the microstructural window. Loading rates of 0.1m/s and 1m/s were applied and element size was chosen to be 3000 nm and 450nm for scale 1 and scale 2, respectively, after the proper convergence study. The grain orientation and grain boundaries are big factors influencing the length scale dependent fracture behavior. Grain orientation layout is able to change not only the path of the cracks, but also the starting time of pre-crack propagation. By conducting such a computational study, unanswered experimental results of various brittle materials' fracture can be reconsidered. For different scales' simulations, cohesive energy as a function of crack length is not much different while the percentage of primary crack in terms of area is significantly larger than microcracks in scale 1. By adopting a preestablished equation based on the work of JR Rice to the simulation results, the role of microcraking versus the role of primary crack propagation on the overall fracture behavior was analyzed.
机译:脆性材料(例如碳化硅(SiC))的断裂行为在断裂过程中受多种因素影响。但是,由于其优异的耐热性,SiC陶瓷在许多行业中的使用越来越多,因此,裂纹扩展分析非常重要。通常以多晶形式发现SiC,其晶界厚度在几纳米至几百纳米的范围内,并且具有多个取向的晶粒的尺寸约为几微米。这项研究的重点是分析如何利用SiC不同取向与晶界厚度之间的相互作用来有针对性地改善SiC的抗断裂性能。由于涉及多个长度尺度,因此采用了多尺度建模策略。使用内聚有限元方法(CFEM),将经过实验处理的纳米级SiC形态图像用于模拟裂纹扩展。通过模拟两个不同的长度刻度窗口的微观结构来考虑对标本刻度的依赖性:300mum x 60mum(刻度1)和75mum x 15mum(刻度2)。在这项研究中,尺度为1的微结构窗口没有明确考虑晶界的存在。由于对标度2的关注更强,因此在微结构窗口中明确地对晶界建模。经过适当的收敛性研究后,应用了0.1m / s和1m / s的加载速率,并且将元素1和2的元素尺寸分别选择为3000 nm和450nm。晶粒取向和晶界是影响与长度相关的断裂行为的主要因素。晶粒取向布局不仅能够改变裂纹的路径,而且能够改变裂纹前扩展的开始时间。通过进行这样的计算研究,可以重新考虑各种脆性材料断裂的无用实验结果。对于不同尺度的模拟,作为裂纹长度的函数的内聚能相差不大,而一次裂纹的面积百分比显着大于尺度1中的微裂纹。通过采用基于JR Rice的工作的预先建立的方程在模拟结果中,分析了微裂纹与初生裂纹扩展在整体断裂行为中的作用。

著录项

  • 作者

    Lee, Hongsuk.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Aerospace.;Engineering Materials Science.
  • 学位 M.S.E.
  • 年度 2011
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号