首页> 外文学位 >Prediction and experimental validation of weld dimensions in thin plates using superimposed laser sources technique.
【24h】

Prediction and experimental validation of weld dimensions in thin plates using superimposed laser sources technique.

机译:使用叠加激光源技术的薄板焊接尺寸的预测和实验验证。

获取原文
获取原文并翻译 | 示例

摘要

Gas Metal Arc Welding (GMAW) is one of the primary techniques used to join thin structures together. The quality of the weld plays an important role in structure integrity and product safety. Weld dimensions such as penetration depth, leg length, throat thickness, and reinforcement height are key to the quality of welds. Therefore, it is crucial to accurately measure them. Previous research has shown that non-destructive evaluation using laser generated bulk waves and electromagnetic acoustic transducer (EMAT) reception is an efficient and effective way to monitor weld quality in thick structures. Laser generated Lamb waves have the potential to be used to monitor weld quality in thin structures. However, due to the fact that laser generated Lamb waves in thin structures are broadband and dispersive, the complexity of ultrasonic signals is greatly increased.;The objective of this research is to develop a method to measure important weld dimensions in thin plates by using laser generated ultrasound. This research comprises three aspects: First, to develop a technique that can generate narrowband Lamb waves in thin plates. Secondly, to develop a signal processing procedure to extract useful information from the ultrasonic signals to evaluate weld dimensions. Thirdly, to develop prediction models to predict weld dimensions by using the reflection coefficients of narrowband Lamb waves.;The technique named superimposed laser sources (SLS) technique is developed to generate narrowband Lamb waves in thin plates. By using the superimposed laser sources, one has the flexibility to generate desired wavelengths of Lamb waves. The advantage of generating narrowband Lamb waves with fixed wavelengths is that the dominant frequency content and traveling speeds of different wave modes can be determined from the dispersion curves.;The signal processing procedure developed in this research is used to reduce the complexity of the signals of Lamb waves in thin structures. It includes wavenumber-frequency (k-o) domain filtering and synthetic phase tuning (SPT). The k-o domain filtering technique helps to filter out the unwanted wave components traveling at the direction that are irrelevant to our analysis and the SPT technique is used to amplify and isolate a particular Lamb wave mode. The signal processing procedure facilitates the calculation of reflection coefficients of Lamb waves that result from the presence of weld joints.;Reflection coefficients that result from the welds can be calculated for A0 and S0 Lamb wave modes for ten discrete wavelengths of interest. Two methods, the direct method and the indirect method, are used to develop models that use reflection coefficients as predictors to measure these weld dimensions. The assumptions made in these two methods are intrinsically different. In the direct method, weld dimensions are assumed to be functions of the reflection coefficients. But in the indirect method, it is assumed that the reflection coefficients are functions of the weld dimensions. Different approaches are taken to identify significant predictors that are used in the prediction models. Both models are shown to effectively predict weld dimensions in thin plates and they are complementary to each other. Furthermore, from the model developed by the indirect method, the response of each reflection coefficient to the change of weld dimensions can be shown. The results provide us a way to investigate the interaction between Lamb waves and geometry of welds. The advantages and disadvantages of these two methods are discussed, and the detailed discussion about the sources of errors is presented.;The weld dimensions measurement techniques and procedures developed in this research have resulted in a new nondestructive and noncontact method for measuring important weld dimensions in thin plates. The techniques and procedures have great potential. They can be applied to other types of thin structures such as curved thin plates. They can also be applied to evaluate welds made by other types of welding processes such as friction stir welding. They will help to improve the quality and efficiency of the welding process on thin structures and reduce costs, material waste and human injury.
机译:气体金属电弧焊(GMAW)是用于将薄结构连接在一起的主要技术之一。焊缝质量在结构完整性和产品安全性中起着重要作用。焊缝尺寸(例如熔深,腿长,喉部厚度和增强高度)是焊缝质量的关键。因此,准确测量它们至关重要。先前的研究表明,使用激光产生的体波和电磁声换能器(EMAT)接收进行无损评估是一种监测厚结构焊接质量的有效方法。激光产生的兰姆波有潜力用于监测薄结构中的焊接质量。然而,由于激光在薄结构中产生的兰姆波是宽带且分散的,因此超声信号的复杂性大大增加。;本研究的目的是开发一种使用激光测量薄板中重要焊缝尺寸的方法产生的超声波。这项研究包括三个方面:首先,开发一种可以在薄板上产生窄带兰姆波的技术。其次,开发一种信号处理程序,从超声信号中提取有用的信息,以评估焊缝尺寸。第三,建立了利用窄带兰姆波反射系数预测焊接尺寸的预测模型。研制了叠加激光源(SLS)技术,在薄板中产生窄带兰姆波。通过使用叠加的激光源,可以灵活地生成所需波长的兰姆波。产生固定波长的窄带兰姆波的优点是可以从色散曲线确定不同波模的主频含量和行进速度。本研究开发的信号处理程序可降低信号的复杂度。薄结构中的兰姆波。它包括波数频率(k-o)域滤波和合成相位调整(SPT)。 k-o域滤波技术有助于滤除沿与我们的分析无关的方向传播的有害波分量,而SPT技术则用于放大和隔离特定的Lamb波模式。信号处理程序有助于计算由于存在焊接接头而产生的兰姆波的反射系数。可以针对十个感兴趣的离散波长,针对A0和S0兰姆波模式计算出由焊接产生的反射系数。使用直接法和间接法两种方法来开发模型,这些模型使用反射系数作为预测因子来测量这些焊缝尺寸。这两种方法所做的假设本质上是不同的。在直接方法中,假定焊接尺寸是反射系数的函数。但是在间接方法中,假设反射系数是焊缝尺寸的函数。采用不同的方法来识别在预测模型中使用的重要预测因子。两种模型均显示可有效预测薄板中的焊接尺寸,并且彼此互补。此外,从通过间接方法开发的模型中,可以显示每个反射系数对焊缝尺寸变化的响应。结果为我们提供了一种研究Lamb波与焊缝几何形状之间相互作用的方法。讨论了这两种方法的优缺点,并详细讨论了误差的来源。本研究开发的焊缝尺寸测量技术和程序,导致了一种新的无损非接触式测量重要焊缝尺寸的方法。薄板。该技术和程序具有巨大的潜力。它们可以应用于其他类型的薄结构,例如弯曲的薄板。它们也可以用于评估由其他类型的焊接工艺(如搅拌摩擦焊)制成的焊缝。它们将有助于提高薄结构焊接工艺的质量和效率,并降低成本,材料浪费和人身伤害。

著录项

  • 作者

    Wu, Tsun-Yen.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号