首页> 外文学位 >Efficient and cost-effective thin film solar cells processed by direct pulsed laser crystallization and direct pulsed laser recrystallization techniques at room temperature.
【24h】

Efficient and cost-effective thin film solar cells processed by direct pulsed laser crystallization and direct pulsed laser recrystallization techniques at room temperature.

机译:在室温下通过直接脉冲激光结晶和直接脉冲激光重结晶技术处理的高效且经济高效的薄膜太阳能电池。

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the depletion of fossil fuel energy and increasing demand for cheaper energy alternatives, improvement of conversion efficiency and reduction of manufacturing cost have been long-time pursuit in the solar cell industry. In this study, novel post thermal processing methods called direct pulsed laser crystallization (DPLC) and direct pulsed laser recrystallization (DPLR) are introduced to rapidly and economically manufacture high performance thin film solar cells. Both DPLC (to process photoactive layer) and DPLR (to process transparent conductive oxide (TCO) layer) are operated at room temperature and atmospheric conditions, required very limited amount of resource, energy, and equipment to startup; they could also be easily integrated for mass productions.;Both finite element analysis (FEA) simulation and experiments are carried out to understand the methodology and mechanism of DPLC and DPLR techniques. An FEA multiphysics model that couples electromagnetic module with heat transfer module is built and examined to reveal the correlation among (1) material properties-including electrical and thermal conductivities (σ and κ), material size (d), substrate type; (2) applied processing conditions — including laser wavelength (λ), laser fluence ( F), laser pulse number (N), and (3) resulting temperature (T) within the thin film under investigation. In DPLC, by using different photoactive nanoparticles, multiphysics simulation effectively predicts the correlation between T and F, N, and d. In DPLR, TCO material such as alumina-doped zinc oxide (AZO) is analyzed and a correlation between T and F, N, substrate type is analyzed in details. Comparing T with melting point, an evaluation to see if certain nanoparticles would experience crystallization or recrystallization process would be accessed.;Under the guidance of simulation, appropriate laser processing conditions could be chosen. After careful selection of processing parameters (λ, F, N), it is found that short laser pulses induced rapid temperature increase and decrease within the target film are mainly responsible for the abnormal crystal growth and recrystallization in photoactive and TCO nanomaterials, respectively. Utilization of nano-scale target materials are also advantageous considering size effects on melting point and laser-nanoparticle interactions which significantly decreases the laser fluence and temperature during DPLC and DPLR processing. Thermal-treated photoactive and TCO thin films are characterized from various aspects including morphology, structure, optical, and electrical properties. It is found that original nanoparticles of both photoactive and TCO materials gradually merge and impinge with neighboring counterparts as laser pulsed are applied; finally a thermodynamic equilibrium will be arrived where crystal growth would stop. Crystallization/Recrystallization of target materials effectively decreases the film resistivity and increases the charged carrier's Hall mobility which potentially increases the movement strength of electrons/hole pairs in thin solar cell devices. Slight decrease on carrier concentration density and increase of absorptance (transmittance) are observed for photoactive (TCO) materials, respectively. This would increase the amount of solar light irradiation that is being accepted by these layers which would potentially increase the amount of effective electron/hole pairs in the solar cells devices.;Upon selection of high repletion rate, high power industry-widely used diode pumped solid state (DPSS) laser system which has power up to 100 W, repletion rate of 100 kHz, very rapid processing at scale of meters per second would be achieved with DPLC and DPLR.
机译:由于化石燃料能源的枯竭和对廉价能源替代品的需求增加,提高转换效率和降低制造成本一直是太阳能电池行业的长期追求。在这项研究中,引入了称为直接脉冲激光结晶(DPLC)和直接脉冲激光重结晶(DPLR)的新型后热处理方法,以快速,经济地制造高性能薄膜太阳能电池。 DPLC(用于处理光敏层)和DPLR(用于处理透明导电氧化物(TCO)层)均在室温和大气条件下运行,需要非常有限的资源,能源和设备才能启动;它们也可以很容易地集成到大规模生产中。进行了有限元分析(FEA)仿真和实验,以了解DPLC和DPLR技术的方法和机理。建立并研究了将电磁模块与传热模块耦合的FEA多物理场模型,并揭示了(1)材料特性之间的相关性,包括电导率和导热率(σ和κ),材料尺寸(d),衬底类型; (2)应用的处理条件-包括被研究薄膜内的激光波长(λ),激光能量密度(F),激光脉冲数(N)和(3)最终温度(T)。在DPLC中,通过使用不同的光敏纳米粒子,多物理场仿真可以有效地预测T与F,N和d之间的相关性。在DPLR中,分析了TCO材料(例如掺氧化铝的氧化锌(AZO)),并详细分析了T和F,N,基板类型之间的相关性。将T与熔点进行比较,可以评估某些纳米粒子是否会经历结晶或重结晶过程。在模拟的指导下,可以选择合适的激光加工条件。在仔细选择加工参数(λ,F,N)后,发现短的激光脉冲引起目标膜内温度的快速升高和降低,分别负责光敏材料和TCO纳米材料中异常的晶体生长和重结晶。考虑到尺寸大小对熔点和激光-纳米颗粒相互作用的影响,纳米尺度靶材料的使用也是有利的,这大大降低了DPLC和DPLR处理期间的激光通量和温度。热处理过的光敏薄膜和TCO薄膜的特征包括形态,结构,光学和电学特性。发现当施加激光脉冲时,光敏材料和TCO材料的原始纳米颗粒逐渐融合并撞击相邻的对应物。最终将达到热力学平衡,晶体生长将停止。目标材料的结晶/再结晶有效地降低了薄膜电阻率,并增加了带电载流子的霍尔迁移率,这有可能增加薄型太阳能电池设备中电子/空穴对的移动强度。对于光敏(TCO)材料,分别观察到载流子浓度密度略有降低和吸收率(透射率)的增加。这将增加这些层所接受的太阳光辐照量,这可能会增加太阳能电池设备中有效电子/空穴对的数量。;在选择高填充率的情况下,工业上广泛使用的大功率二极管泵浦使用DPLC和DPLR,可以实现功率高达100 W,重复频率为100 kHz的固态(DPSS)激光系统,并能以每秒米的速度进行非常快速的处理。

著录项

  • 作者

    Zhang, Martin Yi.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Industrial.;Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号