首页> 外文学位 >Mechanistic insights on important biomolecules derived using simple dynamics models from extending the reach of elastic network modeling.
【24h】

Mechanistic insights on important biomolecules derived using simple dynamics models from extending the reach of elastic network modeling.

机译:通过扩展弹性网络建模的范围,可以使用简单的动力学模型对重要生物分子进行机械分析。

获取原文
获取原文并翻译 | 示例

摘要

The dynamics of biomolecules are important for carrying out their biologic functions, but these remain difficult to probe in detail experimentally, so that their accurate computational evaluation is an important field of ongoing study. Critical questions remain open such as what are the importance of individual interactions within a structure, the composition of denatured states and equilibrium native ensembles, as well as the role and conservation of flexibility in functional dynamics. The tools of Molecular Dynamics, Monte Carlo simulation, and Normal Mode Analysis coupled with knowledge-based approaches represent the mainstay of computational approaches used in this field.;The primary focus of this dissertation is to explore the functional dynamics of important biomolecules while extending the utility of Normal Mode Analysis using Elastic Network Models through the application of novel analysis methods. Many of these techniques have been made available to the scientific community through the software tool MAVEN which integrates and automates many of the steps in model building and analysis. By utilizing these tools, we have discerned structural dynamics characteristics and mechanistic behaviors of antibodies, ribosomes, telomerase, and efflux systems. Modes from multiple Anisotropic Network Models capture collective as well as local motions which accurately describe a large set of experimental tRNA structures. Mechanistic understanding of biomolecular motion can aid in the understanding of physiology, disease states, and our ability to engineer new structures with novel functions.;The ability to distinguish native-like structures from a set of computational predictions is important not only in structure prediction, but also in molecular docking and for predicting conformational changes. We propose a new algorithm for evaluating the entropy of motion of biomolecules, showing that it leads to enhanced discrimination between native-like and non-native-like models in both structure predictions and protein-protein docking. Our findings indicate that the shape of a protein or complex contains sufficient information to distinguish it from poorer quality predictions. Graph theoretical approaches have also been employed to investigate the connectedness of the protein structure universe, showing that the modularity of protein domain architecture is of fundamental importance for future improvements in structure matching. All of the studies herein impact our understanding of protein domain evolution and modification.
机译:生物分子的动力学对于履行其生物学功能很重要,但是这些仍然很难通过实验进行详细探究,因此精确的计算评估是正在进行的重要研究领域。关键问题仍然悬而未决,例如结构中各个相互作用的重要性,变性状态的组成和平衡的自然整体的重要性,以及功能动力学中柔性的作用和保留。分子动力学,蒙特卡洛模拟和正态分析等工具与基于知识的方法相结合,代表了该领域计算方法的主体。本论文的主要重点是探索重要生物分子的功能动力学,同时扩展通过使用新颖的分析方法,使用弹性网络模型进行正常模式分析的实用程序。这些技术中的许多已通过软件工具MAVEN提供给科学界,该工具整合并自动执行了模型构建和分析中的许多步骤。通过使用这些工具,我们已经识别出抗体,核糖体,端粒酶和外排系统的结构动力学特征和机制行为。来自多个各向异性网络模型的模式捕获了集体运动以及局部运动,这些运动准确地描述了大量实验性tRNA结构。对生物分子运动的机械理解可以帮助理解生理学,疾病状态以及我们设计具有新颖功能的新结构的能力。从一组计算预测中区分出类似自然结构的能力不仅在结构预测中很重要,而且还可以用于分子对接以及预测构象变化。我们提出了一种新的算法来评估生物分子的运动熵,表明它在结构预测和蛋白质-蛋白质对接中导致了自然样模型和非自然样模型之间增强的区分。我们的发现表明,蛋白质或复合物的形状包含足够的信息,可将其与较差的质量预测区分开。图论方法也已用于研究蛋白质结构宇宙的连通性,表明蛋白质结构域结构的模块化对于结构匹配的未来改进具有根本的重要性。本文所有研究均影响我们对蛋白质结构域进化和修饰的理解。

著录项

  • 作者

    Zimmermann, Michael Thomas.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Biology Bioinformatics.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号