首页> 外文学位 >Wear Resistant Carbide-based Thermal Sprayed Coatings: Process, Properties, Mechanical Degradation and Wear.
【24h】

Wear Resistant Carbide-based Thermal Sprayed Coatings: Process, Properties, Mechanical Degradation and Wear.

机译:耐磨硬质合金热喷涂涂层:工艺,性能,机械降解和磨损。

获取原文
获取原文并翻译 | 示例

摘要

Thermally sprayed ceramic-metallic composite (CerMet) materials consist of ceramic particles mainly in form of carbides reinforced by metallic binder exhibit unique microstructural and mechanical characteristics. Such structure brings in a novel combination of hardness and toughness enabling application of this class of material in wear resistant surfaces. Final deposit microstructure that defines the mechanical properties and wear performance of material depends on process parameters and starting material characteristics. Complex interaction of in-flight particles with supersonic flame, formation of complex defective deposit structure comprising of pores, cracks and splat boundaries make comprehending of interrelation of process, microstructure, properties and performance a difficult task. Additional challenge is development of systematic understanding on mechanical degradation, damage and wear mechanisms of cermet coatings due to their complex structure.;This dissertation attempts to address these issues first by taking a systematic step by step approach, process map, to establish a correlation between process, particle state, microstructure and properties. Different strategies were proposed and examined to control the high velocity thermal spray process. This strategy assessment enabled a better control over in-flight particles state in high velocity thermal spray process and provided better understanding on interaction of in-flight particles with the flame. Further, possible advantages of reducing the carbide particle size from micron to nano in terms of mechanical properties and different wear performance were explored. It was suggested that poor wear performance of nano-structured coating is due to presence of brittle phases and less available binder promotes the excessive stress detrimental to load carrying capability of material. Material damage and wear mechanisms of coating under different tribological conditions were examined. The results suggest a correlation between relative abrasive particle size/carbide particle size and observed wear mechanism. Additionally effect of surface open porosities was highlighted. A surface damage mechanisms map was developed for coatings under increasing tangential force. This work has significant implications in improved material and process design of composite wear resistant structures and systems as it provides comprehensive qualitative insight to the wear mechanism of complex composite thermally sprayed structures under different tribological contact conditions. Additionally, this work provides an establishment between process, microstructure, properties and performance for this class of materials.
机译:热喷涂陶瓷-金属复合材料(CerMet)由陶瓷颗粒组成,主要为碳化物形式,并由金属粘合剂增强,并具有独特的微观结构和机械特性。这种结构带来了硬度和韧性的新颖组合,使此类材料可应用于耐磨表面。最终沉积物的微观结构决定了材料的机械性能和磨损性能,取决于工艺参数和原材料的特性。飞行中的粒子与超音速火焰的复杂相互作用,包括孔,裂纹和碎片边界在内的复杂缺陷沉积物结构的形成,使得难以理解工艺,微观结构,性能和性能之间的相互关系。另一个挑战是对由于金属陶瓷涂层结构复杂而引起的机械降解,损坏和磨损机理的系统性理解的发展。本论文试图首先通过采取系统的逐步方法,工艺图来建立这些之间的相关性,以解决这些问题。过程,颗粒状态,微观结构和性能。提出并研究了不同的策略来控制高速热喷涂过程。该策略评估可以更好地控制高速热喷涂过程中的飞行中粒子状态,并更好地了解飞行中粒子与火焰的相互作用。此外,探索了将碳化物粒度从微米减小到纳米的可能优点,包括机械性能和不同的磨损性能。有人认为,纳米结构涂层的耐磨性能差是由于存在脆性相,而较少的可用粘结剂会促进对材料的承载能力有害的过度应力。研究了不同摩擦条件下涂层的材料破坏和磨损机理。结果表明相对磨料粒度/碳化物粒度与观察到的磨损机理之间存在相关性。另外,突出了表面开孔的影响。在增加切向力的情况下,为涂料开发了表面损伤机理图。这项工作对于改进复合材料耐磨结构和系统的材料和工艺设计具有重要意义,因为它为复杂复合材料热喷涂结构在不同摩擦接触条件下的磨损机理提供了全面的定性见解。此外,这项工作为此类材料在工艺,微观结构,性能和性能之间建立了联系。

著录项

  • 作者

    Ghabchi, Arash.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号