首页> 外文学位 >Inertial Sensor Design at Dynamic Range Extremes: Integrated CMOS-MEMS high-g and mu-g accelerometers.
【24h】

Inertial Sensor Design at Dynamic Range Extremes: Integrated CMOS-MEMS high-g and mu-g accelerometers.

机译:动态范围极限条件下的惯性传感器设计:集成式CMOS-MEMS高g和mu g加速度计。

获取原文
获取原文并翻译 | 示例

摘要

Recent technology trends have seen an increasing commercial use of MEMS accelerometers in gaming platforms, mobile devices, and navigation solutions, among other applications. However a gap exists in the availability of integrated MEMS accelerometers that operate at either extreme of the dynamic range of accelerometers.;The work accomplished in this research addresses this gap in the design of integrated CMOS-MEMS high-g accelerometers and integrated Si-CMOS-MEMS micro-g accelerometers. The high-g sensor design is a 3-axis integrated solution that is unique compared to sensors that operate in a similar dynamic range but are not integrated, and are therefore larger in both volume and size. The CMOS -MEMS high-g sensor designs build on previously demonstrated capacitive CMOS-MEMS accelerometers, designed with resonant frequencies in the single kHz range, and noise limits as low as 45 microg/√Hz [Tsai] [Lakdawala] [Xie]. The design has been fabricated and shock tested up to 30,000 g.;The design of a 3-axis Si-CMOS-MEMS low noise, low drift micro-g accelerometer integrated on a single chip is a novel addition to current navigation-grade inertial sensor technology that operate in a similar dynamic range, but also do not include integrated sensors and therefore suffer in comparison in their volume and weight.;The work also addresses a gap in understanding of the dominant causes of bias drift, and lays the foundation for potential bias drift compensation. Finite element simulations, as well as temperature sensors and on-chip stress sensors are used to understand the relationship between environmental changes and sensor bias. The on-chip stress sensors indicate that other on-chip sensors could eventually be integrated with MEMS sensors to provide bias drift compensation, and thus significantly increasing sensor accuracy for applications where the sensor output is integrated over long periods of time.
机译:近期的技术趋势已使MEMS加速度计在游戏平台,移动设备和导航解决方案以及其他应用中的商业用途不断增加。然而,在加速度计的动态范围的任何一个极端情况下运行的集成MEMS加速度计的可用性方面都存在差距。本研究完成的工作解决了集成CMOS-MEMS高g加速度计和集成Si-CMOS设计中的这一差距。 -MEMS micro-g加速度计。高g传感器设计是3轴集成解决方案,与在类似动态范围内运行但未集成的传感器相比,它具有独特性,因此体积和尺寸都更大。 CMOS -MEMS高g传感器设计基于先前展示的电容式CMOS-MEMS加速度计,其谐振频率在单个kHz范围内,噪声限制低至45 microg /√Hz[Tsai] [Lakdawala] [Xie]。该设计已经过制造并经过了30,000 g的冲击测试;集成在单个芯片上的3轴Si-CMOS-MEMS低噪声,低漂移微g加速度计的设计是当前导航级惯性的新颖补充传感器技术可在类似的动态范围内运行,但不包括集成传感器,因此在体积和重量方面都比较不利。这项工作还解决了在理解偏差漂移的主要原因方面的空白,并为电位偏置漂移补偿。有限元模拟以及温度传感器和片上应力传感器用于了解环境变化与传感器偏置之间的关系。片上应力传感器表明,其他片上传感器最终可以与MEMS传感器集成在一起,以提供偏置漂移补偿,从而显着提高了传感器输出在长时间内集成的应用的精度。

著录项

  • 作者

    Tsao, Amy Wung.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 253 p.
  • 总页数 253
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号