首页> 外文学位 >Integrated Laboratory and Fieldwork Exercies for Controlling Greenhouse Gas Emissions from Landfills.
【24h】

Integrated Laboratory and Fieldwork Exercies for Controlling Greenhouse Gas Emissions from Landfills.

机译:控制垃圾掩埋场温室气体排放的综合实验室和野外作业练习。

获取原文
获取原文并翻译 | 示例

摘要

Landfills are large sources of CH4, but a considerable amount of CH4 can be removed in situ by methanotrophs if their activity can be stimulated through the addition of nitrogen. Nitrogen can, however, lead to increased N2O production. To examine the effects of nitrogen and a selective inhibitor on CH4 oxidation and N2O production in situ, 0.5 M of NH4Cl and 0.25 M of KNO3, with and without 0.01% (w/v) phenylacetylene, were applied to test plots at a landfill in Kalamazoo, MI from 2007 November to 2009 July. The addition of NH4+ and NO3 increased N2O production, but had no effect on CH4 concentrations. The simultaneous addition of phenylacetylene reduced N2O production and enhanced CH4 oxidation. PCR analyses showed that methanotrophs, especially those possessing particulate methane monooxygenase, were more abundant than those possessing soluble methane monooxygenase, and, interestingly, archaeal ammonia-oxidizers were more abundant than their bacterial counterpart. Microarray analyses showed NH4+ and NO3 caused the overall methanotrophic diversity to decrease, with a significant reduction in the presence of Type I methanotrophs. The simultaneous addition of phenylacetylene caused methanotrophic diversity to increase, with greater presence of Type I methanotrophs. Also, archaeal amoA gene clone libraries were constructed to examine the long-term effects of the amendment on the AOA community structure. Clone libraries showed that the addition of NH 4+ and NO3 increased the presence of Group 1.1b archaeal ammonia-oxidizers, while their presence decreased with the simultaneous addition of phenylacetylene. Several methanotrophs were investigated to examine the relative importance of methanotrophic mediated N2O production. Five out of six Type II methanotrophic strains produced 32--342 ppmv of N20, while two Type I strains did not produce detectable amount of N 2O. Collectively, these results suggest that the addition of phenylacetylene with NH4+ and NO3 reduces N2O production by selectively inhibiting archaeal ammonia-oxidizers and/or Type II methanotrophs, but it is currently unknown what the magnitude of N 2O production might be from archaeal ammonia-oxidizers. Once the major contributors on N2O production are identified, we may be able to come up with a better strategy to mitigate in situ GHG emissions from a landfill.
机译:垃圾填埋场是CH4的主要来源,但如果可以通过添加氮来刺激甲烷的活动,则可以通过甲烷营养生物原位去除大量CH4。但是,氮气会导致N2O产量增加。为了检查氮气和选择性抑制剂对CH4氧化和N2O产生的影响,将0.5 M NH4Cl和0.25 M KNO3(含和不含0.01%(w / v)苯乙炔)分别应用于垃圾填埋场的试验区。密歇根州卡拉马祖市从2007年11月至2009年7月。 NH4 +和NO3的添加增加了N2O的产生,但对CH4的浓度没有影响。同时加入苯乙炔可减少N2O产生并增强CH4氧化。 PCR分析表明,甲烷氧化菌,特别是那些具有颗粒状甲烷单加氧酶的甲烷,比那些具有可溶性甲烷单加氧酶的甲烷更丰富,而且有趣的是,古细菌氨氧化剂比其细菌的对应物更丰富。基因芯片分析显示,NH4 +和NO3导致总体甲烷营养生物多样性降低,而I型甲烷营养生物的存在则显着降低。苯乙炔的同时添加导致甲烷营养型多样性增加,I型甲烷营养型存在更多。同样,构建了古细菌amoA基因克隆文库,以检查该修饰对AOA群落结构的长期影响。克隆文库显示,NH 4+和NO3的添加增加了1.1b组古细菌氨氧化剂的存在,而同时添加苯乙炔则减少了它们的存在。研究了几种甲烷营养生物,以研究甲烷营养介导的N2O产生的相对重要性。六种II型甲烷营养型菌株中有五种产生32--342 ppmv N20,而I型菌株中有两株则无法检测出N 2O。总体而言,这些结果表明,通过选择性抑制古细菌氨氧化剂和/或II型甲烷营养菌,在NH4 +和NO3中加入苯乙炔会减少N2O的产生,但目前尚不清楚古细菌氨氧化剂产生的N 2O的量是多少。 。一旦确定了N2O生产的主要贡献者,我们也许能够提出更好的策略来减少垃圾填埋场的原地温室气体排放。

著录项

  • 作者

    Im, Jeongdae.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Biology Microbiology.;Geochemistry.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号