首页> 外文学位 >Developpement de modeles dynamiques de prediction de la tension critique de contournement des isolateurs recouverts de glace bases sur la methode des elements finis.
【24h】

Developpement de modeles dynamiques de prediction de la tension critique de contournement des isolateurs recouverts de glace bases sur la methode des elements finis.

机译:基于有限元方法的动态模型的开发,用于预测覆冰绝缘子的临界旁路电压。

获取原文
获取原文并翻译 | 示例

摘要

The vast majority of dynamic and static models for predicting critical flashover voltage (FOV) of ice-covered insulators during the melting period use Wilkins analytical formulation to calculate the residual resistance of ice layer. Since this formulation can be used only for well-defined uniform ice layer with simple geometrical shape, it seems difficult to adapt it to non-uniform ice layer or for insulators with complex geometries. In addition, all dynamic models being developed are restricted to arcing distance less than one meter since they can take into account only one arc in contact with the ice surface. To overcome this problem, it was decided recently to use finite element method (FEM) to develop dynamic predictive models applied to insulators covered with a non-uniform ice layer, and this, for arcing distances that can reach two meters. This last consideration requires the implementation of two partial arcs in contact with the ice surface.;The proposed models were elaborated by using the commercial software FEM COMSOL MultiphysicsRTM which was coupled with MatlabRTM in order to enable the execution of algorithms. The three FEM dynamic models mentioned above were validated with experimental and numerical results obtained in previous studies. The comparison of different results concludes that the FEM single arc dynamic models in DC and AC are able to predict the critical flashover voltage with accuracy as good as the one found by the current dynamic models. The maximum error is around 13 % regardless of the applied water conductivity, the arcing distance (less than one meter) and the air gap initial length. This latter, which is an influential parameter, was not taken into account in most of the existing dynamic models. Regarding the two-arc dynamic model which is presently, to the best of our knowledge, the only dynamic model that can be applied to arcing distance higher than one meter, the comparison of the results show that the numerical results obtained are in agreement with the experimental ones obtained in previous studies with a maximum error of 5,8 %.;The use of FEM, the implementation of Hampton criterion as a criterion of propagation and the modeling of water film and arc root allowed the development of simple dynamic models that can predict critical FOV of ice-covered insulators with a maximum arcing distance of two meters. Also, the results have demonstrated the versatility of all proposed models that can easily trace the evolution of several parameters, namely the residual resistance, the leakage current and the applied voltage versus the displacement of one or two arc roots along the ice surface.;With this objective, three predictive dynamic models were established in this research work, that is to say a direct current (DC) single arc model, an alternative current (AC) single arc model and finally an AC two-arc dynamic model. The latter is in fact an extension of the AC single arc model. All the developed models are based on the model of Obenaus and use the FEM to calculate the residual resistance of the ice layer. Because of the presence of a conductive water film thickness assumed to be constant, the ice surface is modeled by a two-dimensional conductive surface in contact with one or two arc roots considered as circular equipotential surfaces. Using Hampton criterion as a propagation condition is a very good approach for designing simple dynamic models because this criterion can be easily validated by FEM. The critical FOV of ice-covered insulators is obtained by simple iterative calculation when the arc root reaches the ground electrode (case of single arc model) or when the two arc roots meet together (case of two-arc model).
机译:预测融化期间覆冰绝缘子的临界闪络电压(FOV)的绝大多数动态和静态模型都使用Wilkins分析公式来计算冰层的残余电阻。由于此配方只能用于定义简单,几何形状简单的均匀冰层,因此很难使其适应非均匀冰层或具有复杂几何形状的绝缘体。另外,所有正在开发的动态模型都限于电弧距离小于一米,因为它们只能考虑与冰面接触的一个电弧。为了克服这个问题,最近决定使用有限元方法(FEM)来开发动态预测模型,该模型适用于覆盖有不均匀冰层的绝缘子,并且电弧距离可以达到两米。这最后一个考虑需要实现与冰面接触的两个局部弧。;通过使用商业软件FEM COMSOL MultiphysicsRTM与MatlabRTM结合,对提出的模型进行了详细说明,以便能够执行算法。上面提到的三个有限元动力学模型已通过先前研究获得的实验和数值结果进行了验证。对不同结果的比较得出结论,直流和交流中的FEM单弧动态模型能够以与当前动态模型相同的精度预测临界闪络电压。无论施加的水传导性,电弧距离(小于一米)和气隙初始长度如何,最大误差约为13%。后者是一个有影响的参数,在大多数现有动态模型中并未考虑到。就目前所知的双电弧动力学模型而言,据我们所知,这是唯一可应用于电弧距离大于一米的动力学模型,结果的比较表明,所获得的数值结果与理论上的相符。在以前的研究中获得的最大实验误差为5.8%。;使用有限元法,采用汉普顿准则作为传播准则以及对水膜和弧根进行建模可以开发出简单的动态模型,预测最大电弧距离为2米的覆冰绝缘子的临界FOV。此外,结果还证明了所有提议模型的多功能性,这些模型可以轻松追踪几个参数的演变,即残余电阻,泄漏电流和施加的电压与沿冰面一两个弧根的位移之间的关系。为此,在这项研究工作中建立了三个预测动态模型,即直流(DC)单电弧模型,交流(AC)单电弧模型,最后是交流两弧动态模型。后者实际上是AC单弧模型的扩展。所有开发的模型均基于Obenaus模型,并使用FEM计算冰层的残余阻力。由于假定存在恒定的导电水膜厚度,因此冰面是通过与一个或两个被认为是圆形等势面的弧根接触的二维导电面建模的。使用汉普顿准则作为传播条件是设计简单动态模型的一种很好的方法,因为该准则可以通过FEM轻松验证。当弧根到达接地电极(单弧模型的情况)或两个弧根汇合在一起(两弧模型的情况)时,可以通过简单的迭代计算获得覆冰绝缘子的临界FOV。

著录项

  • 作者

    Mhaguen, Nisrine.;

  • 作者单位

    Universite du Quebec a Chicoutimi (Canada).;

  • 授予单位 Universite du Quebec a Chicoutimi (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.Sc.A.
  • 年度 2011
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号