首页> 外文学位 >Fabrication and characterization of recombinant silk-elastinlike protein fibers for tissue engineering applications.
【24h】

Fabrication and characterization of recombinant silk-elastinlike protein fibers for tissue engineering applications.

机译:用于组织工程应用的重组丝-弹性蛋白蛋白纤维的制备和表征。

获取原文
获取原文并翻译 | 示例

摘要

The integration of functional and structural properties makes genetically engineered proteins appealing in tissue engineering. Silk-elastinlike proteins (SELPs), containing tandemly repeated polypeptide sequence derived from natural silk and elastin, are recently under active study due to the interesting structure. The biological, chemical, physical properties of SELPs have been extensively investigated for their possible applications in drug/gene delivery, surgical tissue sealing and spine repair surgery. However, the mechanical aspect has rarely been looked into. Moreover, many other biomaterials have been fabricated into fibers in micrometer and nanometer scale to build extracellular matrix-mimic scaffolds for tissue regeneration, but many have one or mixed defects such as: poor strength, mild toxicity or immune repulsion etc. The SELP fibers, with the intrinsic primary structures, have novel mechanical properties that can make them defects-minimized scaffolds in tissue engineering.;In this study, one SELP (SELP-47K) was fabricated into microfibers and nanofibers by the techniques of wet-spinning and electrospinning. Microfibers of meters long were formed and collected from a methanol coagulation bath, and later were crosslinked by glutaraldehyde (GTA) vapor. The resultant microfibers displayed higher tensile strength up to 20 MPa and higher deformability as high as 700% when tested in hydrated state. Electrospinnig of SELP-47K in formic acid and water resulted in rod-like and ribbon-like nanofibrous scaffolds correspondingly. Both chemical (methanol and/or GTA) and physical (autoclaving) crosslinking methods were utilized to stabilize the scaffolds. The chemical crosslinked hydrated scaffolds exhibit elastic moduli of 3.4-13.2 MPa, ultimate tensile strength of 5.7-13.5 MPa, and deformability of 100-130%, closely matching or exceeding the native aortic elastin; while the autoclaved one had lower numbers: 1.0 MPa elastic modulus, 0.3 MPa ultimate strength and 29% deformation. However, the resilience was all above 80%, beyond the aortic elastin, which is 77%. Additionally, Fourier transform infrared spectra showed clear secondary structure transition after crosslinking, explaining the phenomenon of scaffold water-insolubility from structural perspective and showed a direct relationship with the mechanical performance. Furthermore, the in vitro biocompatibility of SELP-47K nanofibrous scaffolds were verified through the culture of NIH 3T3 mouse embryonic fibroblast cells.
机译:功能和结构特性的整合使基因工程蛋白质在组织工程中具有吸引力。丝绸弹性蛋白样蛋白(SELPs)包含从天然丝绸和弹性蛋白中串联重复的多肽序列,由于其有趣的结构,最近正在积极研究中。已经广泛研究了SELP的生物学,化学,物理性质,以探讨其在药物/基因递送,外科手术组织密封和脊柱修复手术中的可能应用。然而,很少研究机械方面。此外,许多其他生物材料已被制成微米和纳米级的纤维,以构建用于组织再生的细胞外基质模拟支架,但许多生物材料具有一种或多种缺陷,例如:强度差,毒性中等或免疫排斥等。SELP纤维,具有固有的一级结构,具有新颖的机械性能,可以使它们在组织工程中的缺陷最小化。在本研究中,通过湿纺和电纺技术将一种SELP(SELP-47K)制成了微纤维和纳米纤维。从甲醇混凝浴中形成并收集了几米长的超细纤维,然后通过戊二醛(GTA)蒸汽进行交联。在水合状态下进行测试时,所得的超细纤维显示出高达20 MPa的更高拉伸强度和高达700%的更高变形性。 SELP-47K在甲酸和水中的静电纺丝作用分别产生了棒状和带状纳米纤维支架。化学(甲醇和/或GTA)和物理(高压灭菌)交联方法均用于稳定支架。化学交联的水合支架表现出3.4-13.2 MPa的弹性模量,5.7-13.5 MPa的极限抗张强度和100-130%的可变形性,非常接近或超过天然主动脉弹性蛋白。而高压釜则具有较低的数值:1.0 MPa弹性模量,0.3 MPa极限强度和29%变形。但是,回弹力都在80%以上,超过了主动脉弹性蛋白77%。此外,傅立叶变换红外光谱显示交联后的二级结构清晰过渡,从结构角度解释了支架水不溶现象,并与机械性能直接相关。此外,通过NIH 3T3小鼠胚胎成纤维细胞的培养验证了SELP-47K纳米纤维支架的体外生物相容性。

著录项

  • 作者

    Qiu, Weiguo.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号