首页> 外文学位 >Bubble template synthesis of hollow gold nanoparticles and their applications as theranostic agents.
【24h】

Bubble template synthesis of hollow gold nanoparticles and their applications as theranostic agents.

机译:空心金纳米粒子的气泡模板合成及其作为治疗剂的应用。

获取原文
获取原文并翻译 | 示例

摘要

Hollow gold nanoparticle with a sub-30nm polycrystalline shell and a 50 nm hollow core has been successfully synthesized through the reduction of sodium gold sulfite by electrochemically evolved hydrogen. Such hollow gold nanoparticles exhibit unique plasmonic properties. They strongly scatter and absorb near infrared light. In this thesis we seek to understand the formation mechanism of hollow gold nanoparticles in this new synthesis process and their plasmonic properties. Also, we explore their biomedical applications as theranostic agents (therapeutic and diagnostic imaging).;A lithographically patterned electrode consisting of Ag stripes on a glass substrate was used to investigate the formation process of hollow gold nanoparticles. Ag stripes served as working electrode for electrochemically evolution of hydrogen, and adjacent glass areas provided supporting surface for hydrogen nanobubbles nucleation and growth. Hydrogen nanobubbles served as both templates and reducing agents to trigger the autocatalytic disproportionation reaction of sodium gold sulfite. The effects of applied potential and the additives in the electrolyte have been studied. It has been found that the size and size distribution of hollow gold nanoparticle are directly relative to the applied potential, i.e. the hydrogen evolution rate. It has also been found the addition of Ni2+ ions can greatly improve the size distribution of hollow gold nanoparticles that can be contributed to that the newly electrodeposited nickel metal can enhance the hydrogen evolution efficiency. Another additive, ethylenediamine (EDA) can suppress the autocatalytic reaction of gold sulfite to increase the stability of sodium gold sulfite electrolyte.;To capture such electrochemically evolved hydrogen nanobubbles, and subsequently to generate hollow gold nanoparticles in large numbers, alumina membranes were placed on the top of the working electrode. Anodic alumina membrane consists of ~200 nm pores, which provides a large surface area for the formation of hydrogen nanobubbles. By this approach, the electroless reaction can be easily separated from the electrodeposition process, and hollow gold nanoparticles can be easily collected.;Synthesized hollow gold nanoparticles exhibit unique plasmonic properties; the surface plasmon resonance (SPR) lies in the near infrared region (NIR). This is very different from the solid spherical gold nanoparticles. Three-dimensional finite difference time domain (FDTD) simulation was employed to study the plasmonic properties of hollow gold nanoparticles. It has been found that the red-shifts of SPR peaks are mainly caused by their surface roughness, and the hollow nature of these particles only plays a minor role. The surface roughness of hollow gold nanoparticles can be tuned by adjusting the pH of the electrolyte (from 6.0 to 7.0) by adding sodium sulfite. Different surface roughness (from smooth to very rough) can be readily obtained, and correspondingly, surface plasmon resonance (SPR) peaks red-shift from ~600 nm to ~750 nm.;Using hollow gold nanoparticles as multifunctional agents for biomedical applications have been explored. Two kinds of agents have been constructed. It has been demonstrated that pegylated Raman dye encoded hollow gold nanoparticles, terms as Raman nanotags, can serve as both diagnostic imaging agents and photothermal therapy agents. When illuminated by near infrared light, the enhanced Raman signal makes the hollow gold nanoparticles to become optically detectable for biomedical imaging, and absorbed light rapidly heat up the hollow gold nanoparticles which can be used to photothermal ablation therapy. The cytotoxicity evaluation using [3H] thymidine incorporation method has shown non-toxicity of the Raman nanotags. The photothermal effects of hollow gold nanoparticles have been examined by two methods: (1) by embedding hollow gold nanoparticles in tissue-like phantom environment; (2) by recording infrared images as temperature increase. The results show that hollow gold nanoparticles are capable to generate sufficiency heat for photothermal therapy. To fully take advantage of the unique hollow core space of hollow gold nanoparticles, a facile route has been develop to trap Fe3O4 nanoparticles into the hollow gold nanoparticles to form Fe3O4/Au core/shell nanoparticles. Fe3O4/Au core/shell nanoparticles possess the desirable magnetic and plasmonic properties that can be used as magnetic resonance contrast (MRI) agents and photothermal therapy agents.
机译:通过电化学释放的氢气还原亚硫酸钠金,已成功合成了具有亚30纳米以下多晶壳和50纳米中空核的空心金纳米粒子。这样的中空金纳米颗粒表现出独特的等离子体性能。它们强烈散射并吸收近红外光。在本文中,我们试图了解中空金纳米粒子在这种新的合成过程中的形成机理及其等离子体性能。此外,我们还探讨了它们作为治疗诊断剂的生物医学应用(治疗和诊断成像)。;使用玻璃基板上由Ag条纹组成的光刻图案化电极来研究空心金纳米粒子的形成过程。 Ag条带用作氢电化学放出的工作电极,相邻的玻璃区域为氢纳米气泡的成核和生长提供了支撑表面。氢纳米气泡既充当模板又充当还原剂,以触发亚硫酸金钠的自催化歧化反应。研究了施加电位和添加剂在电解质中的作用。已经发现,中空金纳米颗粒的尺寸和尺寸分布直接与所施加的电势,即氢析出速率有关。还已经发现,添加Ni 2+离子可以大大改善空心金纳米颗粒的尺寸分布,这可以有助于新沉积的镍金属可以提高析氢效率。另一种添加剂乙二胺(EDA)可以抑制亚硫酸金的自催化反应,从而提高亚硫酸金钠电解质的稳定性。;为了捕获这种电化学生成的氢纳米气泡,随后生成大量空心金纳米颗粒,将氧化铝膜置于工作电极的顶部。阳极氧化铝膜由〜200 nm的孔组成,为形成氢纳米气泡提供了较大的表面积。通过这种方法,可以容易地将化学反应与电沉积过程分离,并且可以容易地收集空心金纳米颗粒。表面等离子体共振(SPR)位于近红外区域(NIR)。这与固态球形金纳米粒子有很大不同。三维有限差分时域(FDTD)模拟用于研究空心金纳米粒子的等离子体性能。已经发现,SPR峰的红移主要是由其表面粗糙度引起的,并且这些颗粒的中空性质仅起次要作用。中空金纳米颗粒的表面粗糙度可以通过添加亚硫酸钠调节电解质的pH值(从6.0到7.0)来调整。可以很容易地获得不同的表面粗糙度(从光滑到非常粗糙),并且相应地,表面等离振子共振(SPR)峰从〜600 nm迁移到〜750 nm。红移;将空心金纳米粒子用作生物医学应用的多功能试剂探索。已经构造了两种代理。已经证明聚乙二醇化的拉曼染料编码的中空金纳米颗粒,称为拉曼纳米标签,既可以用作诊断成像剂又可以用作光热疗法剂。当被近红外光照射时,增强的拉曼信号使空心金纳米颗粒在光学上可用于生物医学成像检测,并且吸收的光迅速加热了空心金纳米颗粒,可用于光热消融治疗。使用[3 H]胸苷掺入方法的细胞毒性评估显示拉曼纳米标签无毒性。空心金纳米粒子的光热效应已通过两种方法进行了研究:(1)将空心金纳米粒子嵌入组织状的幻像环境中; (2)通过记录红外图像随着温度的升高。结果表明,空心金纳米粒子能够产生足够的热量用于光热疗法。为了充分利用空心金纳米颗粒独特的空心核空间,已开发出一种简便的方法将Fe3O4纳米颗粒捕获到空心金纳米颗粒中以形成Fe3O4 / Au核/壳纳米颗粒。 Fe3O4 / Au核/壳纳米粒子具有理想的磁性和等离激元性质,可用作磁共振对比(MRI)剂和光热疗法剂。

著录项

  • 作者

    Huang, Chienwen.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Nanoscience.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号