首页> 外文学位 >Development of Detailed, Reduced and Skeletal Kinetic Mechanisms for Hydrocarbon Oxidation at Low and Intermediate Temperatures.
【24h】

Development of Detailed, Reduced and Skeletal Kinetic Mechanisms for Hydrocarbon Oxidation at Low and Intermediate Temperatures.

机译:低温和中温下烃氧化的详细,还原和骨架动力学机理的发展。

获取原文
获取原文并翻译 | 示例

摘要

In the absence of scalable alternative energy sources that are greenhouse gas (GHG) neutral, hydrocarbon fuels are expected to continue to be a large part of the energy mix for the foreseeable future. Nevertheless, combustion technologies and fuels will have to be improved and refined to reduce hazardous and GHG emissions and improve efficiency. Computer simulations using accurate chemical kinetic models are increasingly being used to aid the development of these technologies. This study presents approaches that can help improve kinetic models for combustion and aid the development of new engine technologies that are fuel efficient and produce lower GHG emissions.;A reduced kinetic mechanism that can predict cool flames for propane-air mixtures was developed. The mechanism is able to predict multiple cool flames, global variables and species concentrations within defined accuracy limits, and reduces computation time by a factor of three and computer memory for the computation by an order of magnitude.;This study also developed algorithms for the development of extended detailed kinetic mechanisms as well as skeletal models for primary fuels and fuel additives. This algorithm was used to develop a detailed mechanism for the combustion of Primary Reference Fuels (PRFs) and Di-Tertiary Butyl Peroxide (DTBP), a fuel additive. The detailed kinetic mechanism was able to help explain the impact of DTBP on PRF combustion in a PCI engine and identify the primary mode of action of DTBP depending on the PRF octane number. The skeletal model reduces the computation time by 99.6%, and requires approximately 0.1% computer memory compared to the detailed mechanism.;As a final objective, the first detailed kinetic mechanism accounting for the formation of lactones during low temperature combustion of hydrocarbons was developed. Lactones are cyclic ethers with a carbonyl function that have been observed experimentally by several research groups including the combustion chemistry group at Drexel University, but not predicted, by kinetic mechanisms available today. The proposed detailed kinetic mechanism, containing 206 new reactions and 35 new species, was able to achieve good agreement with published experimental data for the non-alkylated lactones produced during the oxidation of n-dodecane in a Pressurized Flow Reactor.
机译:在没有可扩展的,可替代温室气体(GHG)的替代能源的情况下,在可预见的将来,碳氢燃料有望继续成为能源结构的很大一部分。尽管如此,燃烧技术和燃料仍需改进和改进,以减少有害气体和温室气体排放并提高效率。使用精确的化学动力学模型的计算机模拟越来越多地用于辅助这些技术的发展。这项研究提出了一些方法,这些方法可以帮助改善燃烧动力学模型,并有助于开发新的发动机技术,这些技术可以提高燃料效率并降低温室气体排放量;减少了动力学机制,可以预测丙烷-空气混合物的冷焰。该机制能够在定义的精度范围内预测多个凉爽的火焰,全局变量和物种浓度,并将计算时间减少三分之一,并将计算机内存减少一个数量级。扩展详细的动力学机制以及主要燃料和燃料添加剂的骨架模型。该算法用于开发详细的机理,用于燃烧主要参考燃料(PRF)和燃料添加剂二叔丁基过氧化物(DTBP)。详细的动力学机制能够帮助解释DTBP对PCI发动机中PRF燃烧的影响,并根据PRF辛烷值确定DTBP的主要作用方式。与详细的机理相比,该骨架模型减少了99.6%的计算时间,并需要大约0.1%的计算机内存。作为最终目标,开发了第一个详细的动力学机理,该机理解释了碳氢化合物在低温燃烧过程中内酯的形成。内酯是具有羰基功能的环状醚,已被包括Drexel大学的燃烧化学小组在内的多个研究小组通过实验观察到,但目前尚无动力学机制对其进行预测。拟议的详细动力学机理包含206个新反应和35个新物种,能够与在加压流化反应器中正十二烷氧化过程中产生的非烷基化内酯的公开实验数据很好地吻合。

著录项

  • 作者

    Gupta, Ashutosh.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Chemistry Organic.;Engineering Chemical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 277 p.
  • 总页数 277
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号