首页> 外文学位 >Molecular and chemical dissection of cellulose biosynthesis in plants.
【24h】

Molecular and chemical dissection of cellulose biosynthesis in plants.

机译:植物纤维素生物合成的分子和化学解剖。

获取原文
获取原文并翻译 | 示例

摘要

Plant cell walls are complex structures that must not only constrain cellular turgor pressure but also allow for structural modification during the dynamic processes of cell division and anisotropic expansion. Cell walls are composed of highly glycosylated proteins and polysaccharides, including pectin, hemicellulose and cellulose. The primary cell wall polysaccharide is cellulose, a polymer composed of high molecular weight beta-1,4-glucan chains. Although cellulose is the most abundant biopolymer on Earth, there is still a lot to learn about its biosynthesis and regulation. This research began by applying a variety of analytical techniques in an attempt to understand differences in cell wall composition and cellulose structure within the plant body, between different plant species and as a result of acclimation by the plant to different environmental conditions. Next, a number of different Arabidopsis thaliana lines possessing mutations affecting cell wall biosynthesis were analyzed for changes in cellulose structure (crystallinity) and biomass saccharification efficiency. One of these mutants, isoxaben resistance1-2 (ixr1-2), which contains a point mutation in the C-terminal transmembrane region (TMR) of cellulose synthase 3 (CESA3), exhibited a 34% lower biomass crystallinity index and a 151% improvement in saccharification efficiency relative to that of wild-type. The culmination of this research began with a chemical screen that identified the molecule quinoxyphen as a primary cell wall cellulose biosynthesis inhibitor. By forward genetics, a semi-dominant mutant showing strong resistance to quinoxyphen named aegeus was identified in A. thaliana and the resistance locus mapped to a point mutation in the TMR of CESA1. cesa1aegeus occurs in a similar location to that of cesa3ixr1-2, illustrating both subunit specificity and commonality of resistance locus. These drug resistant CESA TMR mutants are dwarfed and have aberrant cellulose deposition. High-resolution synchrotron X-ray diffraction and 13C solid-state nuclear magnetic resonance spectroscopy analysis of cellulose produced from cesa1aegeus , cesa3ixr1-2 and the double mutant shows a reduction in cellulose microfibril width and an increase in mobility of the interior glucan chains of the cellulose microfibril relative to wild-type. These data demonstrate the importance of the TMR region of CESA1 and CESA3 for the arrangement of glucan chains into a crystalline cellulose microfibril in primary cell walls.;Keywords: cell wall, cellulose microfibril, cellulose synthase, saccharification efficiency, crystallinity.
机译:植物细胞壁是复杂的结构,不仅必须限制细胞膨胀压力,而且还必须在细胞分裂和各向异性膨胀的动态过程中进行结构修饰。细胞壁由高度糖基化的蛋白质和多糖(包括果胶,半纤维素和纤维素)组成。主要的细胞壁多糖是纤维素,一种由高分子量β-1,4-葡聚糖链组成的聚合物。尽管纤维素是地球上最丰富的生物聚合物,但有关其生物合成和调控的知识仍然很多。这项研究始于应用各种分析技术,以试图了解植物体内不同植物种类之间以及由于植物适应不同环境条件而导致的细胞壁组成和纤维素结构差异。接下来,分析了具有影响细胞壁生物合成的突变的许多不同的拟南芥品系的纤维素结构(结晶度)和生物质糖化效率的变化。这些突变体中的一种,即异沙宾抗性1-2(ixr1-2),其在纤维素合成酶3(CESA3)的C端跨膜区(TMR)中包含一个点突变,其生物量结晶度指标降低了34%,生物质结晶度指标降低了151%相对于野生型糖化效率的提高。这项研究的高潮始于化学筛选,该化学筛选将喹啉酚分子鉴定为主要的细胞壁纤维素生物合成抑制剂。通过正向遗传学,在拟南芥中鉴定出对喹啉酚具有强抗性的半显性突变体,称为爱琴海藻,并且该抗性基因座被映射到CESA1的TMR中的点突变。 cesa1aegeus发生在与cesa3ixr1-2相似的位置,这说明了耐药位点的亚基特异性和共性。这些抗药性的CESA TMR突变体相形见and,并具有异常的纤维素沉积。对cesa1aegeus,cesa3ixr1-2和double突变体生产的纤维素进行高分辨率同步加速器X射线衍射和13C固态核磁共振波谱分析,结果表明,纤维素微纤丝宽度减小,且其内部葡聚糖链的迁移率增加。纤维素微纤维相对于野生型。这些数据证明了CESA1和CESA3的TMR区域对于将葡聚糖链排列到原代细胞壁中的结晶纤维素微纤维中的重要性。关键词:细胞壁,纤维素微纤维,纤维素合酶,糖化效率,结晶度。

著录项

  • 作者

    Harris, Darby M.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Plant sciences.;Genetics.;Botany.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号