首页> 外文学位 >Empirical Investigation of Carbon Nanotube Pillar Array Field Emitter Geometry for Increased Current Densities.
【24h】

Empirical Investigation of Carbon Nanotube Pillar Array Field Emitter Geometry for Increased Current Densities.

机译:碳纳米管支柱阵列场发射极几何结构对增加电流密度的实证研究。

获取原文
获取原文并翻译 | 示例

摘要

Since their discovery in 1976 and detailed report in 1991, carbon nanotubes (CNTs) have gone through a great deal of research devoted to studying their extraordinary properties and applications. The high aspect ratio structure of CNTs, their chemical stability high thermal conductivity, and mechanical strength, are attributes that make CNTs excellent candidates for cold field emitters. CNTs are capable of achieving longer lifetime and higher current densities at lower applied fields, thus making them highly attractive for field emission applications requiring high current densities. However, until now, fabricating stable and robust CNT cold field emitters has been very difficult while simultaneously achieving economical manufacturing. The high current density required for certain applications such as microwave amplifiers still remain a tremendous challenge.;In spite of the progress made in recent years on understanding the fundamentals of CNT emitters and on how to implement CNTs in applications requiring electron sources, wide-scale adoption remains elusive. There are still many factors that contribute to the CNT emission process which arc not fully understood, particularly with respect to achieving optimal emission current and emitter stability. Phenomena such as field screening, local field enhancement and the edge effect have been explored in the last few years. For many applications where CNT emitters can be implemented, several of the above mentioned phenomena have not been fully explored. Previously, we have demonstrated that CNT pillar arrays (CPAs) offer a practical solution for the fabrication of stable and easy to manufacture CNT cathodes. A CNT pillar is described as a uniform, highly dense, vertically aligned, compact bundle of CNTs. Vertical self-alignment of CNTs results from the van der Waals interaction between neighboring CNTs and contributes to the excellent structural stability of CNT pillars. These CNT pillar structures exhibit lower turn-on fields and a higher current density when compared to that of continuous CNT films. In this work, we explore the structural effects of CNT emitter arrays on the field emission properties of the CNT cathodes. The geometry of each pillar was specifically chosen to investigate the effect of the cathode geometry on the electric field enhancement at the edges of the structure This enhancement effect is called the "edge effect" and can be described as a phenomenon where the electric field is enhanced along the edges of a CNT pillar structure. By varying the geometry of the pillar structures, we now have a means to increase emission current density.
机译:自1976年发现碳纳米管并于1991年发表详细报告以来,碳纳米管(CNT)经历了大量的研究,致力于研究其非凡的性能和应用。 CNT的高纵横比结构,其化学稳定性,高导热性和机械强度是使CNT成为冷场发射器的极佳候选者的属性。 CNT能够在较低的应用场中获得更长的寿命和更高的电流密度,因此使其对于需要高电流密度的场发射应用具有高度的吸引力。然而,直到现在,制造稳定且坚固的CNT冷场发射器一直很困难,同时又要实现经济的制造。尽管近年来在理解CNT发射器的基本原理以及如何在需要电子源的应用中实现CNT方面取得了进展,但微波放大器等某些应用所需的高电流密度仍然是巨大的挑战。采用仍然难以捉摸。仍然有很多因素尚未完全了解CNT发射过程,特别是在实现最佳发射电流和发射极稳定性方面。在最近几年中已经探索了诸如场筛选,局部场增强和边缘效应等现象。对于可以实现CNT发射器的许多应用,上述现象中的几种尚未得到充分探索。以前,我们已经证明CNT柱阵列(CPA)为制造稳定且易于制造的CNT阴极提供了实用的解决方案。 CNT柱被描述为均匀,高密度,垂直排列的紧凑的CNT束。 CNT的垂直自对准是由相邻CNT之间的范德华相互作用引起的,并有助于CNT柱的出色结构稳定性。与连续的CNT膜相比,这些CNT柱结构具有较低的导通场和较高的电流密度。在这项工作中,我们探索了CNT发射器阵列对CNT阴极的场发射特性的结构影响。特别选择了每个支柱的几何形状,以研究阴极几何形状对结构边缘电场增强的影响。这种增强效应称为“边缘效应”,可以描述为电场增强的现象。沿着CNT柱结构的边缘。通过改变支柱结构的几何形状,我们现在有了增加发射电流密度的方法。

著录项

  • 作者

    Silan, Jeremy Lucas.;

  • 作者单位

    Santa Clara University.;

  • 授予单位 Santa Clara University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号